Maximal entanglement increase with single-photon subtraction
- URL: http://arxiv.org/abs/2103.09197v2
- Date: Thu, 28 Apr 2022 08:40:30 GMT
- Title: Maximal entanglement increase with single-photon subtraction
- Authors: Kun Zhang, Jietai Jing, Nicolas Treps, Mattia Walschaers
- Abstract summary: Entanglement is an indispensable quantum resource for quantum information technology.
In continuous-variable quantum optics, photon subtraction can increase entanglement between Gaussian states of light.
We prove that single-photon subtraction increases bipartite entanglement by no more than log 2.
- Score: 6.359294579761927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is an indispensable quantum resource for quantum information
technology. In continuous-variable quantum optics, photon subtraction can
increase the entanglement between Gaussian states of light, but for mixed
states the extent of this entanglement increase is poorly understood. In this
work, we use an entanglement measure based the R\'enyi-2 entropy to prove that
single-photon subtraction increases bipartite entanglement by no more than log
2. This value coincides with the maximal amount of bipartite entanglement that
can be achieved with one photon. The upper bound is valid for all Gaussian
input states, regardless of the number of modes and the purity.
Related papers
- Deterministic photonic entanglement arising from non-Abelian quantum holonomy [0.0]
We develop a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light.
Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states.
We envision that this entangling mechanism could be utilized for realizing universal, entangling quantum gates with linear photonic elements alone.
arXiv Detail & Related papers (2024-07-29T18:32:33Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - The quantum beam splitter with many partially indistinguishable photons:
multiphotonic interference and asymptotic classical correspondence [44.99833362998488]
We present the analysis of the quantum two-port interferometer in the $n rightarrow infty$ limit of $n$ partially indistinguishable photons.
Our main result is that the output distribution is dominated by the $O(sqrtn)$ channels around a certain $j*$ that depends on the degree of indistinguishability.
The form is essentially the doubly-humped semi-classical envelope of the distribution that would arise from $2 j*$ indistinguishable photons, and which reproduces the corresponding classical intensity distribution.
arXiv Detail & Related papers (2023-12-28T01:48:26Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantification of Quantum Correlations in Two-Beam Gaussian States Using
Photon-Number Measurements [0.0]
We implement a general method to quantify various forms of quantum correlations using solely the experimental intensity moments up to the fourth order.
This is possible as these moments allow for an exact determination of the global and marginal impurities of two-beam Gaussian fields.
arXiv Detail & Related papers (2022-09-12T17:28:22Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - A multipair-free source of entangled photons in the solid state [0.0]
Multiphoton emission commonly reduces the degree of entanglement of photons generated by non-classical light sources.
Quantum emitters have the potential to overcome this hurdle but, so far, the effect of multiphoton emission on the quality of entanglement has never been addressed in detail.
arXiv Detail & Related papers (2022-03-31T14:50:16Z) - Full Realization Scheme of the Tensor Product Space of N Distinguishable
Photons in Two States [0.0]
We show that such a realization can not be done by a unitary process.
By modifying the previous interferometer, the full tonsorial product space of N photons in two states is shown.
arXiv Detail & Related papers (2021-08-10T04:19:50Z) - Quantifying quantum correlation of quasi-Werner state and probing its
suitability for quantum teleportation [0.0]
We analyze the behavior of the Wigner function of two quasi-Werner states theoretically constructed by superposing two normalized bipartite $m$-photon added coherent states.
We show that the performance of the quasi-Werner states as quantum channel for the teleportation of a single-mode coherent and squeezed states, as quantified via teleportation fidelity, improves with the photon addition.
arXiv Detail & Related papers (2020-11-30T11:30:31Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.