論文の概要: Sample-based Federated Learning via Mini-batch SSCA
- arxiv url: http://arxiv.org/abs/2103.09506v1
- Date: Wed, 17 Mar 2021 08:38:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-18 12:50:59.780403
- Title: Sample-based Federated Learning via Mini-batch SSCA
- Title(参考訳): ミニバッチSSCAによるサンプルベースフェデレーション学習
- Authors: Chencheng Ye, Ying Cui
- Abstract要約: 近似凸と制約付きサンプルベースフェデレーション最適化について検討した。
各問題に対して,逐次凸近似手法を用いたプライバシー保護アルゴリズムを提案する。
提案アルゴリズムは, 速度, 通信コスト, モデル仕様の点で, 数値的な利点がある。
- 参考スコア(独自算出の注目度): 18.11773963976481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate unconstrained and constrained sample-based
federated optimization, respectively. For each problem, we propose a privacy
preserving algorithm using stochastic successive convex approximation (SSCA)
techniques, and show that it can converge to a Karush-Kuhn-Tucker (KKT) point.
To the best of our knowledge, SSCA has not been used for solving federated
optimization, and federated optimization with nonconvex constraints has not
been investigated. Next, we customize the two proposed SSCA-based algorithms to
two application examples, and provide closed-form solutions for the respective
approximate convex problems at each iteration of SSCA. Finally, numerical
experiments demonstrate inherent advantages of the proposed algorithms in terms
of convergence speed, communication cost and model specification.
- Abstract(参考訳): 本稿では,制約のないサンプルベースフェデレーション最適化について検討する。
それぞれの問題に対して,確率的逐次凸近似(SSCA)技術を用いたプライバシー保護アルゴリズムを提案し,KKT(Karush-Kuhn-Tucker)点に収束可能であることを示す。
我々の知る限り、SSCAはフェデレーション最適化には使われておらず、非凸制約によるフェデレーション最適化は検討されていない。
次に、提案した2つのSSCAアルゴリズムを2つのアプリケーション例にカスタマイズし、SSCAの各イテレーションにおける各近似凸問題に対するクローズドフォームソリューションを提供する。
最後に数値実験により,提案手法の収束速度,通信コスト,モデル仕様の点で本質的な利点を示す。
関連論文リスト
- Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [34.628967272528044]
本稿では,制約付きマルチレベル最適化関数に対するプロジェクションフリーアルゴリズムについて検討する。
段階的適応を用いて凸関数と強凸関数の複素数を求める。
論文 参考訳(メタデータ) (2024-06-06T06:56:56Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Accelerated stochastic approximation with state-dependent noise [7.4648480208501455]
勾配観測における2次雑音に対する一般仮定の下での滑らかな凸最適化問題を考察する。
このような問題は、統計学におけるよく知られた一般化された線形回帰問題において、様々な応用において自然に発生する。
SAGDとSGEは、適切な条件下で、最適収束率を達成することを示す。
論文 参考訳(メタデータ) (2023-07-04T06:06:10Z) - Debiasing Conditional Stochastic Optimization [15.901623717313493]
本稿では,ポートフォリオ選択や強化学習,堅牢な学習など,さまざまな応用をカバーする条件因果最適化(CSO)問題について検討する。
有限変量変量CSO問題に対する新しいアルゴリズムを開発し、既存の結果を大幅に改善する。
我々は,本手法が他の最適化問題と同様の課題に対処するための有用なツールとなる可能性があると考えている。
論文 参考訳(メタデータ) (2023-04-20T19:19:55Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
本研究では,曲線(AUC)のスコアを直接最適化することにより,不均衡なデータに対する新しいフェデレート学習法を開発した。
私たちの知る限りでは、このような好ましい理論的な結果を達成した最初の作品である。
論文 参考訳(メタデータ) (2023-04-20T05:49:41Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
本稿ではサンプルベースおよび特徴ベース連合最適化について検討する。
提案アルゴリズムは,モデルアグリゲーション機構を通じてデータプライバシを保持できることを示した。
また,提案アルゴリズムは,各フェデレーション最適化問題のKarush-Kuhn-Tucker点に収束することを示した。
論文 参考訳(メタデータ) (2021-04-13T08:23:46Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
本稿では,深層学習(深層AUC)により注目度が高まっている,円滑な非凹部min-max問題の解法に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-12T00:32:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。