Fused Deep Features Based Classification Framework for COVID-19
Classification with Optimized MLP
- URL: http://arxiv.org/abs/2103.09904v1
- Date: Mon, 15 Mar 2021 14:30:12 GMT
- Title: Fused Deep Features Based Classification Framework for COVID-19
Classification with Optimized MLP
- Authors: Saban Ozturk, Enes Yigit and Umut Ozkaya
- Abstract summary: The new type of Coronavirus disease called COVID-19 continues to spread quite rapidly.
Although it shows some specific symptoms, this disease, which can show different symptoms in almost every individual, has caused hundreds of thousands of patients to die.
The help of computer aided diagnosis (CAD) and artificial intelligence (AI) algorithms is vital.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The new type of Coronavirus disease called COVID-19 continues to spread quite
rapidly. Although it shows some specific symptoms, this disease, which can show
different symptoms in almost every individual, has caused hundreds of thousands
of patients to die. Although healthcare professionals work hard to prevent
further loss of life, the rate of disease spread is very high. For this reason,
the help of computer aided diagnosis (CAD) and artificial intelligence (AI)
algorithms is vital. In this study, a method based on optimization of
convolutional neural network (CNN) architecture, which is the most effective
image analysis method of today, is proposed to fulfill the mentioned COVID-19
detection needs. First, COVID-19 images are trained using ResNet-50 and VGG-16
architectures. Then, features in the last layer of these two architectures are
combined with feature fusion. These new image features matrices obtained with
feature fusion are classified for COVID detection. A multi-layer perceptron
(MLP) structure optimized by the whale optimization algorithm is used for the
classification process. The obtained results show that the performance of the
proposed framework is almost 4.5% higher than VGG-16 performance and almost
3.5% higher than ResNet-50 performance.
Related papers
- Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Deep learning for COVID-19 diagnosis based feature selection using
binary differential evolution algorithm [1.332091725929965]
The new Coronavirus is spreading rapidly and has taken the lives of many people so far.
Deep Convolution neural networks are a powerful tool in classifying images.
Our results demonstrate the suggested approach is better than recent studies on COVID-19 detection with X-ray images.
arXiv Detail & Related papers (2021-04-15T07:12:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from
Radiographs [1.9798034349981157]
We present an accurate Convolutional Neural Network framework for differentiating COVID19 cases from other pneumonia cases.
This work presents a 3-step technique to fine-tune a pre-trained ResNet-50 architecture to improve model performance.
This model can help in the early screening of COVID19 cases and help reduce the burden on healthcare systems.
arXiv Detail & Related papers (2020-03-31T17:42:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.