論文の概要: Are High-Frequency Components Beneficial for Training of Generative
Adversarial Networks
- arxiv url: http://arxiv.org/abs/2103.11093v1
- Date: Sat, 20 Mar 2021 04:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 05:02:53.690110
- Title: Are High-Frequency Components Beneficial for Training of Generative
Adversarial Networks
- Title(参考訳): 生成的対向ネットワークの学習における高周波成分の有用性
- Authors: Ziqiang Li, Pengfei Xia, Xue Rui, Yanghui Hu, Bin Li
- Abstract要約: GAN(Generative Adversarial Networks)は、実際の画像と視覚的に区別できない現実的な画像を生成する能力を持つ。
画像スペクトルの最近の研究は、生成画像と実画像が高周波で有意な差を持つことを示した。
GAN訓練における高周波差を除去する2つの前処理手法を提案する。
- 参考スコア(独自算出の注目度): 11.226288436817956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in Generative Adversarial Networks (GANs) have the ability to
generate realistic images that are visually indistinguishable from real images.
However, recent studies of the image spectrum have demonstrated that generated
and real images share significant differences at high frequency. Furthermore,
the high-frequency components invisible to human eyes affect the decision of
CNNs and are related to the robustness of it. Similarly, whether the
discriminator will be sensitive to the high-frequency differences, thus
reducing the fitting ability of the generator to the low-frequency components
is an open problem. In this paper, we demonstrate that the discriminator in
GANs is sensitive to such high-frequency differences that can not be
distinguished by humans and the high-frequency components of images are not
conducive to the training of GANs. Based on these, we propose two preprocessing
methods eliminating high-frequency differences in GANs training: High-Frequency
Confusion (HFC) and High-Frequency Filter (HFF). The proposed methods are
general and can be easily applied to most existing GANs frameworks with a
fraction of the cost. The advanced performance of the proposed method is
verified on multiple loss functions, network architectures, and datasets.
- Abstract(参考訳): GAN(Generative Adversarial Networks)の進歩は、実際の画像と視覚的に区別できない現実的な画像を生成する能力を持つ。
しかし、近年の研究では、生成画像と実画像が高周波で有意な差があることが示されている。
さらに、人間の目に見えない高周波成分はcnnの決定に影響を与え、そのロバスト性に関連している。
同様に、判別器が高周波差に敏感かどうかが問題となるため、低周波成分への発電機の取付け能力の低下が問題となる。
本稿では,gansにおける識別器は,人間が区別できないような高周波差に敏感であり,画像の高周波成分がganの訓練に寄与しないことを示す。
そこで本研究では,高周波数コンフュージョン(HFC)と高周波数フィルタ(HFF)の2つの前処理手法を提案する。
提案手法は汎用的であり,ほとんどの既存の GAN フレームワークに対して,コストのごく一部で容易に適用可能である。
提案手法の高度な性能は,複数の損失関数,ネットワークアーキテクチャ,データセット上で検証される。
関連論文リスト
- FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
本稿では、新しい任意スケール超解像法であるFreqINR(FreqINR)について述べる。
トレーニングでは,適応離散コサイン変換周波数損失(adaptive Discrete Cosine Transform Frequency Loss,ADFL)を用いて,HR画像と地絡画像の周波数ギャップを最小化する。
推論の際には,低分解能(LR)画像と地軸画像のスペクトルコヒーレンスを維持するために受容場を拡張した。
論文 参考訳(メタデータ) (2024-08-25T03:53:17Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Spectrum Translation for Refinement of Image Generation (STIG) Based on
Contrastive Learning and Spectral Filter Profile [15.5188527312094]
生成した画像の周波数領域における相違を緩和する枠組みを提案する。
これは、コントラスト学習に基づく画像生成(STIG)の洗練のためのスペクトル変換によって実現される。
我々は,STIGの有効性を実証するために,8つのフェイク画像データセットと様々な最先端モデルにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-03-08T06:39:24Z) - Low-Light Enhancement in the Frequency Domain [24.195131201768096]
低照度画像には、可視性、高密度ノイズ、偏光色がよく見られる。
周波数領域で学習した新しい残差多重ウェーブレット畳み込みニューラルネットワークR2-MWCNNを提案する。
このエンドツーエンドのトレーニング可能なネットワークは、マルチレベル離散ウェーブレット変換を使用して入力特徴写像を異なる周波数に分割し、より優れたノイズの影響をもたらす。
論文 参考訳(メタデータ) (2023-06-29T08:39:34Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
本稿では,周波数帯域を低域から高域に漸進的に洗練するために,IGNetと呼ばれる新しいネットワークアーキテクチャを提案する。
この設計では、より周波数間先行と情報を利用するため、モデルサイズは軽量化でき、競争結果も維持できる。
論文 参考訳(メタデータ) (2021-12-22T10:35:53Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
対応する画像分解能の喪失は、医用画像診断の全体的な性能を低下させる。
ディープラーニングベースのシングルイメージスーパーレゾリューション(SISR)アルゴリズムは、全体的な診断フレームワークに革命をもたらした。
本研究は,低周波データから高頻度情報を学習する深層マルチアテンションモジュールを用いたGAN(Generative Adversarial Network)を提案する。
論文 参考訳(メタデータ) (2021-10-22T10:13:46Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
周波数領域の狭さが画像再構成と合成品質をさらに改善できることを示す。
本稿では,合成が難しい周波数成分に適応的に焦点を合わせることのできる,新しい焦点周波数損失を提案する。
論文 参考訳(メタデータ) (2020-12-23T17:32:04Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
劣化画像から直接クリーンな画像生成装置を学習するために, ぼかし, ノイズ, 圧縮堅牢なGAN(BNCR-GAN)を提案する。
NR-GANにインスパイアされたBNCR-GANは、画像、ぼやけたカーネル、ノイズ、品質要素ジェネレータで構成される多重ジェネレータモデルを使用する。
CIFAR-10の大規模比較とFFHQの一般性解析によるBNCR-GANの有効性を実証する。
論文 参考訳(メタデータ) (2020-03-17T17:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。