論文の概要: Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer
Classification in Imbalanced Data Sets
- arxiv url: http://arxiv.org/abs/2103.12068v2
- Date: Wed, 24 Mar 2021 15:05:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 11:22:38.286021
- Title: Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer
Classification in Imbalanced Data Sets
- Title(参考訳): 不均衡データセットにおける皮膚癌分類のための深層ニューラルネットワークを用いた移動学習
- Authors: Aqsa Saeed Qureshi and Teemu Roos
- Abstract要約: 医療画像から皮膚癌を正確に分類するための機械学習技術が報告されている。
多くのテクニックは、訓練済みの畳み込みニューラルネットワーク(CNN)に基づいており、限られたトレーニングデータに基づいてモデルをトレーニングすることができる。
本稿では,複数のcnnモデルが事前学習され,一部は手元のデータのみにトレーニングされ,患者情報(メタデータ)はメタリーナーを用いて結合される,新しいアンサンブルベースのcnnアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.6802401545890961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early diagnosis plays a key role in prevention and treatment of skin
cancer.Several machine learning techniques for accurate classification of skin
cancer from medical images have been reported. Many of these techniques are
based on pre-trained convolutional neural networks (CNNs), which enable
training the models based on limited amounts of training data. However, the
classification accuracy of these models still tends to be severely limited by
the scarcity of representative images from malignant tumours. We propose a
novel ensemble-based CNN architecture where multiple CNN models, some of which
are pre-trained and some are trained only on the data at hand, along with
patient information (meta-data) are combined using a meta-learner. The proposed
approach improves the model's ability to handle scarce, imbalanced data. We
demonstrate the benefits of the proposed technique using a dataset with 33126
dermoscopic images from 2000 patients.We evaluate the performance of the
proposed technique in terms of the F1-measure, area under the ROC curve
(AUC-ROC), and area under the PR curve (AUC-PR), and compare it with that of
seven different benchmark methods, including two recent CNN-based techniques.
The proposed technique achieves superior performance in terms of all the
evaluation metrics (F1-measure $0.53$, AUC-PR $0.58$, AUC-ROC $0.97$).
- Abstract(参考訳): 早期診断は皮膚がんの予防と治療において重要な役割を担っており、医療画像から正確に皮膚がんを分類するための機械学習技術が報告されている。
これらの技術の多くは、訓練済みの畳み込みニューラルネットワーク(CNN)に基づいており、限られたトレーニングデータに基づいてモデルをトレーニングすることができる。
しかし,これらのモデルの分類精度は悪性腫瘍の代表像の不足により著しく制限される傾向にある。
本稿では,複数のcnnモデルが事前学習され,一部は手元のデータのみにトレーニングされ,患者情報(メタデータ)はメタリーナーを用いて結合される,新しいアンサンブルベースのcnnアーキテクチャを提案する。
提案手法は,不足した不均衡なデータを扱うモデルの能力を向上させる。
提案手法の利点として,2000症例の33126個の皮膚内視鏡画像を用いたデータセットを用いて,提案手法の性能を,F1測定値,ROC曲線下面積,PR曲線下面積(AUC-PR)で評価し,最近のCNNに基づく2つの手法を含む7種類のベンチマーク手法と比較した。
提案手法は,すべての評価指標(F1-measure $0.53$, AUC-PR $0.58$, AUC-ROC $0.97$)において優れた性能を実現する。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Predicting Knee Osteoarthritis Progression from Structural MRI using
Deep Learning [2.9822184411723645]
先行技術は手動でデザインされたイメージングバイオマーカーに焦点を合わせており、MRIスキャンに存在するすべての疾患関連情報を十分に活用するものではないかもしれない。
対照的に,本手法では,Deep Learningを用いて生データのエンドツーエンドから関連する表現を学習する。
この方法は2D CNNを用いてデータをスライス的に処理し、抽出した特徴をTransformerを使って集約する。
論文 参考訳(メタデータ) (2022-01-26T10:17:41Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Deep Multi-Scale Resemblance Network for the Sub-class Differentiation
of Adrenal Masses on Computed Tomography Images [16.041873352037594]
副腎の腫瘤は良性または悪性であり、良性は様々な有病率を持つ。
CNNは、大規模な医用画像訓練データセットのクラス間差を最大化する最先端技術である。
副腎腫瘤に対するCNNの応用は、大きなクラス内変異、大きなクラス間類似性、不均衡なトレーニングデータにより困難である。
そこで我々は,これらの制約を克服する深層マルチスケール類似ネットワーク(DMRN)を開発し,クラス内類似性を評価するためにペアCNNを利用した。
論文 参考訳(メタデータ) (2020-07-29T06:24:53Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。