Stabilizing multiple topological fermions on a quantum computer
- URL: http://arxiv.org/abs/2103.12783v2
- Date: Thu, 25 Mar 2021 04:43:26 GMT
- Title: Stabilizing multiple topological fermions on a quantum computer
- Authors: Jin Ming Koh, Tommy Tai, Yong Han Phee, Wei En Ng, and Ching Hua Lee
- Abstract summary: We show how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions.
Our work showcases how advances in quantum algorithm implementation enables NISQ-era quantum computers to be exploited for topological stabilization.
- Score: 2.4336236749534548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In classical and single-particle settings, non-trivial band topology always
gives rise to robust boundary modes. For quantum many-body systems, however,
multiple topological fermions are not always able to coexist, since Pauli
exclusion prevents additional fermions from occupying the limited number of
available topological modes. In this work, we show, through IBM quantum
computers, how one can robustly stabilize more fermions than the number of
topological modes through specially designed 2-fermion interactions. Our
demonstration hinges on the realization of BDI- and D-class topological
Hamiltonians of unprecedented complexity on transmon-based quantum hardware,
and crucially relied on tensor network-aided circuit recompilation approaches
beyond conventional trotterization. We also achieved the full reconstruction of
multiple-fermion topological band structures through iterative quantum phase
estimation (IQPE). All in all, our work showcases how advances in quantum
algorithm implementation enables NISQ-era quantum computers to be exploited for
topological stabilization beyond the context of single-particle topological
invariants.
Related papers
- Of gyrators and anyons [0.0]
We show how generic multiterminal circuits can be expressed as gyrator networks with quantized gyration conductance.
Circular scattering in three-terminal quantum dot chains gives rise to a flat topological ground state.
We provide concepts for error correction protocols, and quantum simulations of interacting fermionic (or generally anyonic) many-body systems.
arXiv Detail & Related papers (2024-10-28T08:34:22Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Spread Complexity and Topological Transitions in the Kitaev Chain [1.4973636284231042]
We use a 1-dimensional p-wave superconductor as a prototype of a system displaying a topological phase transition.
The Hamiltonian of the Kitaev chain manifests two gapped phases of matter with fermion parity symmetry.
We show that Krylov-complexity is able to distinguish between the two and provides a diagnostic of the quantum critical point that separates them.
arXiv Detail & Related papers (2022-08-12T14:52:28Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.