Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric
Alignment and Category-Center Regularization
- URL: http://arxiv.org/abs/2103.13041v1
- Date: Wed, 24 Mar 2021 08:04:08 GMT
- Title: Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric
Alignment and Category-Center Regularization
- Authors: Haoyu Ma, Xiangru Lin, Zifeng Wu, Yizhou Yu
- Abstract summary: We propose a novel UDA pipeline that unifies image-level alignment and category-level feature distribution regularization in a coarse-to-fine manner.
Experimental results show that our proposed pipeline improves the capability of the generalization of the final segmentation model.
- Score: 42.25246413410471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) in semantic segmentation is a
fundamental yet promising task relieving the need for laborious annotation
works. However, the domain shifts/discrepancies problem in this task compromise
the final segmentation performance. Based on our observation, the main causes
of the domain shifts are differences in imaging conditions, called image-level
domain shifts, and differences in object category configurations called
category-level domain shifts. In this paper, we propose a novel UDA pipeline
that unifies image-level alignment and category-level feature distribution
regularization in a coarse-to-fine manner. Specifically, on the coarse side, we
propose a photometric alignment module that aligns an image in the source
domain with a reference image from the target domain using a set of image-level
operators; on the fine side, we propose a category-oriented triplet loss that
imposes a soft constraint to regularize category centers in the source domain
and a self-supervised consistency regularization method in the target domain.
Experimental results show that our proposed pipeline improves the
generalization capability of the final segmentation model and significantly
outperforms all previous state-of-the-arts.
Related papers
- I2F: A Unified Image-to-Feature Approach for Domain Adaptive Semantic
Segmentation [55.633859439375044]
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work.
Key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly.
This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation.
arXiv Detail & Related papers (2023-01-03T15:19:48Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - Unsupervised Domain Adaptive Fundus Image Segmentation with
Category-level Regularization [25.58501677242639]
This paper presents an unsupervised domain adaptation framework based on category-level regularization.
Experiments on two publicly fundus datasets show that the proposed approach significantly outperforms other state-of-the-art comparison algorithms.
arXiv Detail & Related papers (2022-07-08T04:34:39Z) - Style Mixing and Patchwise Prototypical Matching for One-Shot
Unsupervised Domain Adaptive Semantic Segmentation [21.01132797297286]
In one-shot unsupervised domain adaptation, segmentors only see one unlabeled target image during training.
We propose a new OSUDA method that can effectively relieve such computational burden.
Our method achieves new state-of-the-art performance on two commonly used benchmarks for domain adaptive semantic segmentation.
arXiv Detail & Related papers (2021-12-09T02:47:46Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain.
We present a semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment.
We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.
arXiv Detail & Related papers (2021-05-11T13:21:25Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Exploring Categorical Regularization for Domain Adaptive Object
Detection [27.348272177261233]
We propose a categorical regularization framework for domain adaptive object detection.
It can be applied as a plug-and-play component on a series of Adaptive Domain Faster R-CNN methods.
Our method obtains a significant performance gain over original Domain Adaptive Faster R-CNN detectors.
arXiv Detail & Related papers (2020-03-20T08:53:10Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
arXiv Detail & Related papers (2020-03-18T04:43:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.