CLAMGen: Closed-Loop Arm Motion Generation via Multi-view Vision-Based
RL
- URL: http://arxiv.org/abs/2103.13267v1
- Date: Wed, 24 Mar 2021 15:33:03 GMT
- Title: CLAMGen: Closed-Loop Arm Motion Generation via Multi-view Vision-Based
RL
- Authors: Iretiayo Akinola, Zizhao Wang, and Peter Allen
- Abstract summary: We propose a vision-based reinforcement learning (RL) approach for closed-loop trajectory generation in an arm reaching problem.
Arm trajectory generation is a fundamental robotics problem which entails finding collision-free paths to move the robot's body.
- Score: 4.014524824655106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a vision-based reinforcement learning (RL) approach for
closed-loop trajectory generation in an arm reaching problem. Arm trajectory
generation is a fundamental robotics problem which entails finding
collision-free paths to move the robot's body (e.g. arm) in order to satisfy a
goal (e.g. place end-effector at a point).
While classical methods typically require the model of the environment to
solve a planning, search or optimization problem, learning-based approaches
hold the promise of directly mapping from observations to robot actions.
However, learning a collision-avoidance policy using RL remains a challenge
for various reasons, including, but not limited to, partial observability, poor
exploration, low sample efficiency, and learning instabilities.
To address these challenges, we present a residual-RL method that leverages a
greedy goal-reaching RL policy as the base to improve exploration, and the base
policy is augmented with residual state-action values and residual actions
learned from images to avoid obstacles. Further more, we introduce novel
learning objectives and techniques to improve 3D understanding from multiple
image views and sample efficiency of our algorithm.
Compared to RL baselines, our method achieves superior performance in terms
of success rate.
Related papers
- Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
We focus on a motion planning task for an evasive target in a partially observable multi-agent adversarial pursuit-evasion games (PEG)
These pursuit-evasion problems are relevant to various applications, such as search and rescue operations and surveillance robots.
We propose a hierarchical architecture that integrates a high-level diffusion model to plan global paths responsive to environment data.
arXiv Detail & Related papers (2024-03-16T03:53:55Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
This study presents a comparative analysis between single-objective and multi-objective reinforcement learning methods for training a robot to navigate effectively to an end goal.
By modifying the reward function to return a vector of rewards, each pertaining to a distinct objective, the robot learns a policy that effectively balances the different goals.
arXiv Detail & Related papers (2023-12-13T08:00:26Z) - Learning to Terminate in Object Navigation [16.164536630623644]
This paper tackles the critical challenge of object navigation in autonomous navigation systems.
We propose a novel approach, namely the Depth-Inference Termination Agent (DITA)
We train our judge model along with reinforcement learning in parallel and supervise the former efficiently by reward signal.
arXiv Detail & Related papers (2023-09-28T04:32:08Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.