ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal
Convolutional Network
- URL: http://arxiv.org/abs/2103.13740v1
- Date: Thu, 25 Mar 2021 10:39:54 GMT
- Title: ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal
Convolutional Network
- Authors: Thorir Mar Ingolfsson, Xiaying Wang, Michael Hersche, Alessio
Burrello, Lukas Cavigelli, Luca Benini
- Abstract summary: Single lead electrocardiogram signals provide ability to detect, classify, and even predict cardiac arrhythmia.
We propose a novel temporal convolutional network (TCN) that achieves high accuracy while still being feasible for wearable platform use.
- Score: 14.503893070243585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized ubiquitous healthcare solutions require energy-efficient
wearable platforms that provide an accurate classification of bio-signals while
consuming low average power for long-term battery-operated use. Single lead
electrocardiogram (ECG) signals provide the ability to detect, classify, and
even predict cardiac arrhythmia. In this paper, we propose a novel temporal
convolutional network (TCN) that achieves high accuracy while still being
feasible for wearable platform use. Experimental results on the ECG5000 dataset
show that the TCN has a similar accuracy (94.2%) score as the state-of-the-art
(SoA) network while achieving an improvement of 16.5% in the balanced accuracy
score. This accurate classification is done with 27 times fewer parameters and
37 times less multiply-accumulate operations. We test our implementation on two
publicly available platforms, the STM32L475, which is based on ARM Cortex M4F,
and the GreenWaves Technologies GAP8 on the GAPuino board, based on 1+8 RISC-V
CV32E40P cores. Measurements show that the GAP8 implementation respects the
real-time constraints while consuming 0.10 mJ per inference. With 9.91
GMAC/s/W, it is 23.0 times more energy-efficient and 46.85 times faster than an
implementation on the ARM Cortex M4F (0.43 GMAC/s/W). Overall, we obtain 8.1%
higher accuracy while consuming 19.6 times less energy and being 35.1 times
faster compared to a previous SoA embedded implementation.
Related papers
- ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction [1.7894680263068135]
We describe ECG--NET for identification of myocardial infarction (OMI)
OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries.
Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram.
arXiv Detail & Related papers (2024-05-08T19:59:16Z) - A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers [10.203375838335935]
A promising approach for real-time analysis of the electrocardiographic (ECG) signal and the detection of heart conditions, such as arrhythmia, is represented by the transformer machine learning model.
We present a tiny transformer model for the analysis of the ECG signal, requiring only 6k parameters and reaching 98.97% accuracy in the recognition of the 5 most common arrhythmia classes from the MIT-BIH Arrhythmia database.
arXiv Detail & Related papers (2024-02-16T15:14:16Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded
Systems [9.525786920713763]
This paper introduces EpiDeNet, a new lightweight seizure detection network.
Sensitivity-Specificity Weighted Cross-Entropy (SSWCE) is a new loss function that incorporates sensitivity and specificity.
A three-window majority voting-based smoothing scheme combined with the SSWCE loss achieves 3x reduction of false positives to 1.18 FP/h.
arXiv Detail & Related papers (2023-08-28T11:29:51Z) - Arrhythmia Classifier using Binarized Convolutional Neural Network for
Resource-Constrained Devices [4.36031697142651]
Binarized convolutional neural network suitable for ECG monitoring is proposed.
It is hardware-friendly and more suitable for use in resource-constrained wearable devices.
It achieves 12.65 times the computing speedup, 24.8 times the storage compression ratio, and only requires a quarter of the memory overhead.
arXiv Detail & Related papers (2022-05-07T14:21:32Z) - Adaptive R-Peak Detection on Wearable ECG Sensors for High-Intensity
Exercise [3.7808904037372524]
Continuous monitoring of biosignals via wearable sensors has quickly expanded in the medical and wellness fields.
Our method, called BayeSlope, is based on unsupervised learning, Bayesian filtering, and non-linear normalization.
As BayeSlope is computationally heavy and can drain the device battery quickly, we propose an online design that adapts its robustness to sudden physiological changes.
arXiv Detail & Related papers (2021-12-08T16:24:23Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19.
We present an end-to-end multitask learning framework (COVID-MTL) that is capable of automated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19.
arXiv Detail & Related papers (2020-12-10T08:30:46Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - Improving Efficiency in Large-Scale Decentralized Distributed Training [58.80224380923698]
We propose techniques to accelerate (A)D-PSGD based training by improving the spectral gap while minimizing the communication cost.
We demonstrate the effectiveness of our proposed techniques by running experiments on the 2000-hour Switchboard speech recognition task and the ImageNet computer vision task.
arXiv Detail & Related papers (2020-02-04T04:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.