Dense Neural Network Based Arrhythmia Classification on Low-cost and Low-compute Micro-controller
- URL: http://arxiv.org/abs/2504.03531v1
- Date: Fri, 04 Apr 2025 15:30:02 GMT
- Title: Dense Neural Network Based Arrhythmia Classification on Low-cost and Low-compute Micro-controller
- Authors: Md Abu Obaida Zishan, H M Shihab, Sabik Sadman Islam, Maliha Alam Riya, Gazi Mashrur Rahman, Jannatun Noor,
- Abstract summary: A dense neural network is developed to detect arrhythmia on the Arduino Nano.<n>The model has a size of 1.267 KB, achieves an F1 score (macro-average) of 78.3% for classifying four types of arrhythmia, an accuracy rate of 96.38%, and requires 0.001314 MOps of floating-point operations (FLOPs)
- Score: 1.0015171648915433
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The electrocardiogram (ECG) monitoring device is an expensive albeit essential device for the treatment and diagnosis of cardiovascular diseases (CVD). The cost of this device typically ranges from $2000 to $10000. Several studies have implemented ECG monitoring systems in micro-controller units (MCU) to reduce industrial development costs by up to 20 times. However, to match industry-grade systems and display heartbeats effectively, it is essential to develop an efficient algorithm for detecting arrhythmia (irregular heartbeat). Hence in this study, a dense neural network is developed to detect arrhythmia on the Arduino Nano. The Nano consists of the ATMega328 microcontroller with a 16MHz clock, 2KB of SRAM, and 32KB of program memory. Additionally, the AD8232 SparkFun Single-Lead Heart Rate Monitor is used as the ECG sensor. The implemented neural network model consists of two layers (excluding the input) with 10 and four neurons respectively with sigmoid activation function. However, four approaches are explored to choose the appropriate activation functions. The model has a size of 1.267 KB, achieves an F1 score (macro-average) of 78.3\% for classifying four types of arrhythmia, an accuracy rate of 96.38%, and requires 0.001314 MOps of floating-point operations (FLOPs).
Related papers
- MSECG: Incorporating Mamba for Robust and Efficient ECG Super-Resolution [27.433941157026737]
We propose MSECG, a compact neural network model designed for ECG SR.<n>MSECG combines the strength of the recurrent Mamba model with convolutional layers to capture both local and global dependencies in ECG waveforms.<n> Experimental results show that MSECG outperforms two contemporary ECG SR models under both clean and noisy conditions.
arXiv Detail & Related papers (2024-12-06T08:53:31Z) - AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification [0.0]
This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately.
We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections.
We obtain exceptional accuracy of 84% in diagnosing cardiac disorders.
arXiv Detail & Related papers (2024-11-21T07:28:24Z) - Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study [29.842103054029433]
This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR.
CardiacNets serves two primary functions: it evaluates cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension.
The findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy.
arXiv Detail & Related papers (2024-11-19T09:09:14Z) - ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction [1.7894680263068135]
We describe ECG--NET for identification of myocardial infarction (OMI)
OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries.
Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram.
arXiv Detail & Related papers (2024-05-08T19:59:16Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - A Novel real-time arrhythmia detection model using YOLOv8 [0.0]
This study underscores the feasibility of employing electrocardiograms (ECG) measurements in the home environment for real-time arrhythmia detection.
We introduce a novel loss-modified YOLOv8 model, fine-tuned on the MIT-BIH arrhythmia dataset, enabling real-time continuous monitoring.
Our investigation exemplifies the potential of real-time arrhythmia detection, enabling users to visually interpret the model output within the comfort of their homes.
arXiv Detail & Related papers (2023-05-26T08:27:09Z) - Arrhythmia Classifier using Binarized Convolutional Neural Network for
Resource-Constrained Devices [4.36031697142651]
Binarized convolutional neural network suitable for ECG monitoring is proposed.
It is hardware-friendly and more suitable for use in resource-constrained wearable devices.
It achieves 12.65 times the computing speedup, 24.8 times the storage compression ratio, and only requires a quarter of the memory overhead.
arXiv Detail & Related papers (2022-05-07T14:21:32Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal
Convolutional Network [14.503893070243585]
Single lead electrocardiogram signals provide ability to detect, classify, and even predict cardiac arrhythmia.
We propose a novel temporal convolutional network (TCN) that achieves high accuracy while still being feasible for wearable platform use.
arXiv Detail & Related papers (2021-03-25T10:39:54Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19.
We present an end-to-end multitask learning framework (COVID-MTL) that is capable of automated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19.
arXiv Detail & Related papers (2020-12-10T08:30:46Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms
for Cardiac Arrhythmia Detection [0.18459705687628122]
We focus on the inference of neural networks running in microcontrollers and low-power processors.
We adapted an existing convolutional-recurrent neural network to detect and classify cardiac arrhythmias.
We show our implementation in fixed-point precision, using the CMSIS-NN libraries, with a memory footprint of 195.6KB, and a throughput of 33.98MOps/s.
arXiv Detail & Related papers (2020-01-08T10:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.