論文の概要: Recovering Quantitative Models of Human Information Processing with
Differentiable Architecture Search
- arxiv url: http://arxiv.org/abs/2103.13939v1
- Date: Thu, 25 Mar 2021 16:00:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:31:47.026477
- Title: Recovering Quantitative Models of Human Information Processing with
Differentiable Architecture Search
- Title(参考訳): 異なるアーキテクチャ探索による人間の情報処理の定量的モデル復元
- Authors: Sebastian Musslick
- Abstract要約: 定量的モデルの自動構築のためのオープンソースのパイプラインを導入する。
これらの手法は、心理物理学、学習、意思決定のモデルから基本的な定量的モチーフを回復することができる。
- 参考スコア(独自算出の注目度): 0.3384279376065155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of behavioral phenomena into mechanistic models of cognitive
function is a fundamental staple of cognitive science. Yet, researchers are
beginning to accumulate increasing amounts of data without having the temporal
or monetary resources to integrate these data into scientific theories. We seek
to overcome these limitations by incorporating existing machine learning
techniques into an open-source pipeline for the automated construction of
quantitative models. This pipeline leverages the use of neural architecture
search to automate the discovery of interpretable model architectures, and
automatic differentiation to automate the fitting of model parameters to data.
We evaluate the utility of these methods based on their ability to recover
quantitative models of human information processing from synthetic data. We
find that these methods are capable of recovering basic quantitative motifs
from models of psychophysics, learning and decision making. We also highlight
weaknesses of this framework, and discuss future directions for their
mitigation.
- Abstract(参考訳): 認知機能の力学モデルへの行動現象の統合は認知科学の基本的な基礎である。
しかし研究者たちは、これらのデータを科学的理論に統合するための時間的資源や金銭的資源を必要とせずに、大量のデータを蓄積し始めている。
我々は、既存の機械学習技術をオープンソースのパイプラインに組み込むことで、これらの制限を克服し、定量的モデルの自動構築を目指している。
このパイプラインは、解釈可能なモデルアーキテクチャの発見を自動化し、モデルパラメータをデータに適合させる自動微分を自動化するために、ニューラルネットワーク検索を利用する。
合成データから人間の情報処理の定量的モデルを復元する能力に基づいて,これらの手法の有用性を評価する。
これらの手法は、心理物理学、学習、意思決定のモデルから基本的な定量的モチーフを回復することができる。
また,このフレームワークの弱点を浮き彫りにして,今後の方向性について論じる。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Model Compression Techniques in Biometrics Applications: A Survey [5.452293986561535]
ディープラーニングアルゴリズムは人類のタスク自動化能力を大きく強化してきた。
これらのモデルの性能の大幅な改善は、その複雑さの増大と非常に相関している。
これにより、性能を著しく低下させることなく、ディープラーニングモデルの計算コストとメモリコストを大幅に削減する圧縮技術の開発につながった。
論文 参考訳(メタデータ) (2024-01-18T17:06:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - AI-Assisted Discovery of Quantitative and Formal Models in Social
Science [6.39651637213537]
本システムは,経済・社会学における実世界のデータから解釈可能なモデルを発見するのに有効であることを示す。
本稿では,このAI支援フレームワークが,社会科学研究でよく用いられるパラメトリックモデルと非パラメトリックモデルとを橋渡しすることができることを提案する。
論文 参考訳(メタデータ) (2022-10-02T16:25:47Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Supply of engineering techniques and software design patterns in
psychoanalysis and psychometrics sciences [0.0]
本研究の目的は、心理療法におけるCBT法(認知行動療法)の弱点を改善するために、ソフトウェア技術、モデル、人工知能アルゴリズムを導入することである。
本研究の目的は、隠れた人間の変数が検査結果から推測される心理測定実験の実装である。
論文 参考訳(メタデータ) (2021-08-16T08:36:37Z) - Information theoretic analysis of computational models as a tool to
understand the neural basis of behaviors [0.0]
今世紀最大の研究課題の1つは、脳の身体環境システムにおける行動の神経基盤を理解することである。
計算モデルは、モデルシステムを研究することができる別のフレームワークを提供する。
本稿では,計算モデルの情報理論解析が強力な研究手法であることを示すための紹介,レビュー,議論を行う。
論文 参考訳(メタデータ) (2021-06-02T02:08:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
剛体力学とデータ駆動モデリング技術を組み合わせた回帰モデルについて検討した。
我々は、ニューラルネットワークやガウス過程などのデータ駆動回帰モデルと分析モデル先行モデルの組み合わせに関する統一的な見解を提供する。
論文 参考訳(メタデータ) (2020-12-11T11:26:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。