The Geometry of Over-parameterized Regression and Adversarial
Perturbations
- URL: http://arxiv.org/abs/2103.14108v1
- Date: Thu, 25 Mar 2021 19:52:08 GMT
- Title: The Geometry of Over-parameterized Regression and Adversarial
Perturbations
- Authors: Jason W. Rocks and Pankaj Mehta
- Abstract summary: We present an alternative geometric interpretation of regression that applies to both under- and over- parameterized models.
We show that adversarial perturbations are a generic feature of biased models, arising from the underlying geometry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical regression has a simple geometric description in terms of a
projection of the training labels onto the column space of the design matrix.
However, for over-parameterized models -- where the number of fit parameters is
large enough to perfectly fit the training data -- this picture becomes
uninformative. Here, we present an alternative geometric interpretation of
regression that applies to both under- and over-parameterized models. Unlike
the classical picture which takes place in the space of training labels, our
new picture resides in the space of input features. This new feature-based
perspective provides a natural geometric interpretation of the double-descent
phenomenon in the context of bias and variance, explaining why it can occur
even in the absence of label noise. Furthermore, we show that adversarial
perturbations -- small perturbations to the input features that result in large
changes in label values -- are a generic feature of biased models, arising from
the underlying geometry. We demonstrate these ideas by analyzing three minimal
models for over-parameterized linear least squares regression: without basis
functions (input features equal model features) and with linear or nonlinear
basis functions (two-layer neural networks with linear or nonlinear activation
functions, respectively).
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Analysis of Interpolating Regression Models and the Double Descent
Phenomenon [3.883460584034765]
It is commonly assumed that models which interpolate noisy training data are poor to generalize.
The best models obtained are overparametrized and the testing error exhibits the double descent behavior as the model order increases.
We derive a result based on the behavior of the smallest singular value of the regression matrix that explains the peak location and the double descent shape of the testing error as a function of model order.
arXiv Detail & Related papers (2023-04-17T09:44:33Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - Leveraging Equivariant Features for Absolute Pose Regression [9.30597356471664]
We show that a translation and rotation equivariant Convolutional Neural Network directly induces representations of camera motions into the feature space.
We then show that this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations.
arXiv Detail & Related papers (2022-04-05T12:44:20Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Bias-variance decomposition of overparameterized regression with random
linear features [0.0]
"Over parameterized models" avoid overfitting even when the number of fit parameters is large enough to perfectly fit the training data.
We show how each transition arises due to small nonzero eigenvalues in the Hessian matrix.
We compare and contrast the phase diagram of the random linear features model to the random nonlinear features model and ordinary regression.
arXiv Detail & Related papers (2022-03-10T16:09:21Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
We develop a framework for nonparametric trace regression models via structured sign series representations of high dimensional functions.
In the context of matrix completion, our framework leads to a substantially richer model based on what we coin as the "sign rank" of a matrix.
arXiv Detail & Related papers (2021-05-04T22:20:00Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.