Quantum computation and simulation with vibrational modes of trapped
ions
- URL: http://arxiv.org/abs/2103.14299v1
- Date: Fri, 26 Mar 2021 07:28:19 GMT
- Title: Quantum computation and simulation with vibrational modes of trapped
ions
- Authors: Wentao Chen, Jaren Gan, Jing-Ning Zhang, Dzmitry Matuskevich, Kihwan
Kim
- Abstract summary: Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource.
We review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes.
We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics.
- Score: 10.319617845809864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vibrational degrees of freedom in trapped-ion systems have recently been
gaining attention as a quantum resource, beyond the role as a mediator for
entangling quantum operations on internal degrees of freedom, because of the
large available Hilbert space. The vibrational modes can be represented as
quantum harmonic oscillators and thus offer a Hilbert space with infinite
dimension. Here we review recent theoretical and experimental progress in the
coherent manipulation of the vibrational modes, including bosonic encoding
schemes in quantum information, reliable and efficient measurement techniques,
and quantum operations that allow various quantum simulations and quantum
computation algorithms. We describe experiments using the vibrational modes,
including the preparation of non-classical states, molecular vibronic sampling,
and applications in quantum thermodynamics. We finally discuss the potential
prospects and challenges of trapped-ion vibrational-mode quantum information
processing.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantifying information scrambling via Classical Shadow Tomography on
Programmable Quantum Simulators [0.0]
We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor.
We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes.
We measure both signatures, and support our results with numerical simulations of the quantum system.
arXiv Detail & Related papers (2022-02-10T16:36:52Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Solving hadron structures using the basis light-front quantization
approach on quantum computers [0.8726465590483234]
We show that quantum computing can be used to solve for the structure of hadrons governed by strongly-interacting quantum field theory.
We present the numerical calculations on simulated quantum devices using the basis light-front quantization approach.
arXiv Detail & Related papers (2021-12-03T14:28:18Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Experimental simulation of open quantum system dynamics via
Trotterization [8.581263348642212]
We experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
arXiv Detail & Related papers (2021-08-05T06:17:26Z) - Perturbative quantum simulation [2.309018557701645]
We introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches.
The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian.
We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies.
arXiv Detail & Related papers (2021-06-10T17:38:25Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.