論文の概要: InsertGNN: Can Graph Neural Networks Outperform Humans in TOEFL Sentence
Insertion Problem?
- arxiv url: http://arxiv.org/abs/2103.15066v1
- Date: Sun, 28 Mar 2021 06:50:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 15:12:58.570969
- Title: InsertGNN: Can Graph Neural Networks Outperform Humans in TOEFL Sentence
Insertion Problem?
- Title(参考訳): InsertGNN: グラフニューラルネットワークはTOEFL文挿入問題において人間より優れているか?
- Authors: Fang Wu and Xiang Bai
- Abstract要約: センテンス挿入は繊細だが基本的なNLP問題である。
文順序付け、テキストコヒーレンス、質問応答(QA)の現在のアプローチは、その解決には適さない。
本稿では,この問題をグラフとして表現し,グラフニューラルネットワーク(GNN)を用いて文間の関係を学習するモデルであるInsertGNNを提案する。
- 参考スコア(独自算出の注目度): 66.70154236519186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentence insertion is a delicate but fundamental NLP problem. Current
approaches in sentence ordering, text coherence, and question answering (QA)
are neither suitable nor good at solving it. In this paper, We propose
InsertGNN, a simple yet effective model that represents the problem as a graph
and adopts the graph Neural Network (GNN) to learn the connection between
sentences. It is also supervised by both the local and global information that
the local interactions of neighboring sentences can be considered. To the best
of our knowledge, this is the first recorded attempt to apply a supervised
graph-structured model in sentence insertion. We evaluate our method in our
newly collected TOEFL dataset and further verify its effectiveness on the
larger arXivdataset using cross-domain learning. The experiments show that
InsertGNN outperforms the unsupervised text coherence method, the topological
sentence ordering approach, and the QA architecture. Specifically, It achieves
an accuracy of 70%, rivaling the average human test scores.
- Abstract(参考訳): 文挿入は繊細だが基本的なNLP問題である。
文順序付け、テキストコヒーレンス、質問応答(QA)の現在のアプローチは、その解決には適さない。
本稿では,この問題をグラフとして表現し,グラフニューラルネットワーク(GNN)を用いて文間の関係を学習するシンプルなモデルであるInsertGNNを提案する。
また、近隣の文の局所的な相互作用を考慮できる地域情報とグローバル情報の両方で教師されている。
我々の知る限りでは、文挿入に教師付きグラフ構造化モデルを適用する試みとしてはこれが初めてである。
本手法を新たに収集したtoeflデータセットで評価し,クロスドメイン学習を用いた大規模arxivデータセットの有効性をさらに検証した。
実験の結果,InsertGNNは教師なしテキストコヒーレンス手法,トポロジカル文順序付け手法,QAアーキテクチャよりも優れていた。
具体的には、平均的な人間のテストスコアに匹敵する70%の精度を達成する。
関連論文リスト
- Towards Dynamic Message Passing on Graphs [104.06474765596687]
グラフニューラルネットワーク(GNN)のための新しい動的メッセージパッシング機構を提案する。
グラフノードと学習可能な擬似ノードを、測定可能な空間関係を持つ共通空間に投影する。
ノードが空間内を移動すると、その進化する関係は動的メッセージパッシングプロセスのための柔軟な経路構築を促進する。
論文 参考訳(メタデータ) (2024-10-31T07:20:40Z) - Graph Neural Networks on Discriminative Graphs of Words [19.817473565906777]
本研究では,単語グラフニューラルネットワーク(DGoW-GNN)によるテキストの識別手法を提案する。
本稿では,GNNとシーケンスモデルを組み合わせたグラフベースのテキスト分類の新しいモデルを提案する。
提案手法を7つのベンチマークデータセットで評価し,いくつかの最先端ベースラインモデルにより性能が向上していることを確認した。
論文 参考訳(メタデータ) (2024-10-27T15:14:06Z) - Classifying Nodes in Graphs without GNNs [50.311528896010785]
本稿では,完全GNNフリーなノード分類手法を提案する。
本手法は, 滑らかさ制約, 擬似ラベル反復, 近傍ラベルヒストグラムの3つの主要成分からなる。
論文 参考訳(メタデータ) (2024-02-08T18:59:30Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
本稿では,ローカル類似性(LocalSim)を用いて,プラグイン・アンド・プレイモジュールとしても機能するノードレベルの重み付き融合を学習する。
そこで本研究では,より情報性の高いマルチホップ情報を抽出するための,新規かつ効率的な初期残留差分接続(IRDC)を提案する。
提案手法,すなわちローカル類似グラフニューラルネットワーク(LSGNN)は,ホモ親和性グラフとヘテロ親和性グラフの両方において,同等あるいは優れた最先端性能を提供できる。
論文 参考訳(メタデータ) (2023-05-07T09:06:11Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
我々は,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
我々は,LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-22T00:23:37Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Exploiting Global Contextual Information for Document-level Named Entity
Recognition [46.99922251839363]
我々は、GCDoc(Global Context enhanced Document-level NER)と呼ばれるモデルを提案する。
単語レベルでは、文書グラフは単語間のより広範な依存関係をモデル化するために構築される。
文レベルでは、単一文を超えてより広い文脈を適切にモデル化するために、横断文モジュールを用いる。
我々のモデルは、CoNLL 2003データセットで92.22(BERTで93.40)、Ontonotes 5.0データセットで88.32(BERTで90.49)のスコアに達した。
論文 参考訳(メタデータ) (2021-06-02T01:52:07Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
多くの標準的なトランスダクティブノード分類ベンチマークでは、最先端のGNNの性能を超えたり、一致させることができる。
これをC&S(Correct and Smooth)と呼ぶ。
我々のアプローチは、様々なベンチマークで最先端のGNNの性能を上回るか、ほぼ一致している。
論文 参考訳(メタデータ) (2020-10-27T02:10:52Z) - Graph Neural Network for Large-Scale Network Localization [35.29322617956428]
グラフニューラルネットワーク(GNN)は、機械学習のコンテキストにおいて構造化データの分類に使用される。
本研究では,古典的だが難解な非線形回帰問題,すなわちネットワークローカライゼーションにGNNを採用する。
まず、GNNは、精度、堅牢性、計算時間の観点から、大規模ネットワークローカライゼーションの最適解である可能性がある。
論文 参考訳(メタデータ) (2020-10-22T12:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。