論文の概要: Score-oriented loss (SOL) functions
- arxiv url: http://arxiv.org/abs/2103.15522v1
- Date: Mon, 29 Mar 2021 11:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 14:31:54.828383
- Title: Score-oriented loss (SOL) functions
- Title(参考訳): スコア指向損失(SOL)関数
- Authors: Francesco Marchetti and Sabrina Guastavino and Michele Piana and
Cristina Campi
- Abstract要約: 本稿では確率的混乱行列に基づいて定義される損失関数のクラスを紹介する。
これらの損失関数の性能は、2つの実験予測問題の訓練段階で検証される。
- 参考スコア(独自算出の注目度): 1.433758865948252
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Loss functions engineering and the assessment of forecasting performances are
two crucial and intertwined aspects of supervised machine learning. This paper
focuses on binary classification to introduce a class of loss functions that
are defined on probabilistic confusion matrices and that allow an automatic and
a priori maximization of the skill scores. The performances of these loss
functions are validated during the training phase of two experimental
forecasting problems, thus showing that the probability distribution function
associated with the confusion matrices significantly impacts the outcome of the
score maximization process.
- Abstract(参考訳): 損失関数エンジニアリングと予測性能の評価は、教師付き機械学習の2つの重要かつ絡み合った側面である。
本稿では、確率的混乱行列に基づいて定義され、スキルスコアの自動最大化と優先順位付けを可能にする損失関数のクラスを導入するための二項分類に焦点を当てる。
これらの損失関数の性能は、2つの実験予測問題の訓練段階で検証され、混乱行列に関連する確率分布関数がスコア最大化過程の結果に大きく影響することを示した。
関連論文リスト
- Two-Stage Nuisance Function Estimation for Causal Mediation Analysis [8.288031125057524]
媒介関数の作用関数に基づく推定器のバイアスの構造において,それらが果たす役割に基づいてニュアンス関数を推定する2段階推定手法を提案する。
本稿では,提案手法の解析と,関心パラメータの推定器の整合性と正規性に関する十分な条件について述べる。
論文 参考訳(メタデータ) (2024-03-31T16:38:48Z) - RoBoSS: A Robust, Bounded, Sparse, and Smooth Loss Function for
Supervised Learning [0.0]
そこで本研究では,教師あり学習のための,頑健で,有界で,スパースで,スムーズなロス関数(RoBoSS)を提案する。
未確認データの一般化のために,$mathcalL_rbss$-SVMという新しいロバストアルゴリズムを導入する。
提案した$mathcalL_rbss$-SVM を実世界の UCI と KEEL のデータセットで18ドルで評価した。
論文 参考訳(メタデータ) (2023-09-05T13:59:50Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - A survey and taxonomy of loss functions in machine learning [51.35995529962554]
本稿では, 回帰, 分類, 生成モデル, ランキング, エネルギーベースモデリングなど, 主要なアプリケーションにまたがる最も広く使われている損失関数について概観する。
直感的な分類法で構築された43個の個別の損失関数を導入し,それらの理論的基礎,特性,最適な適用状況を明らかにした。
論文 参考訳(メタデータ) (2023-01-13T14:38:24Z) - Xtreme Margin: A Tunable Loss Function for Binary Classification
Problems [0.0]
本稿では,新しい損失関数 Xtreme Margin の損失関数について概説する。
二進的クロスエントロピーやヒンジ損失関数とは異なり、この損失関数は研究者や実践者がトレーニングプロセスに柔軟性をもたらす。
論文 参考訳(メタデータ) (2022-10-31T22:39:32Z) - Rectified Max-Value Entropy Search for Bayesian Optimization [54.26984662139516]
我々は、相互情報の概念に基づいて、修正されたMES取得関数を開発する。
その結果、RMESは、いくつかの合成関数ベンチマークと実世界の最適化問題において、MESよりも一貫した改善を示している。
論文 参考訳(メタデータ) (2022-02-28T08:11:02Z) - Probabilistic Contrastive Loss for Self-Supervised Learning [25.097498223895016]
本稿では,自己教師型学習のための確率的コントラスト損失関数を提案する。
提案した損失関数の興味深い性質は実証的に示され、人間のような予測に一致する。
論文 参考訳(メタデータ) (2021-12-02T23:41:52Z) - On Codomain Separability and Label Inference from (Noisy) Loss Functions [11.780563744330038]
本稿では,任意の(ノイズの多い)損失関数値からラベル推論が可能となる必要かつ十分な条件を検討するために,コドメイン分離性の概念を導入する。
一般的なアクティベーション機能を持つマルチクラスクロスエントロピーや,ブレグマンの発散に基づく損失を含む,多くの一般的な損失関数に対して,任意の雑音レベルに対するラベル推論攻撃を設計可能であることを示す。
論文 参考訳(メタデータ) (2021-07-07T05:29:53Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。