論文の概要: Energy Decay Network (EDeN)
- arxiv url: http://arxiv.org/abs/2103.15552v1
- Date: Wed, 10 Mar 2021 23:17:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 01:01:27.144526
- Title: Energy Decay Network (EDeN)
- Title(参考訳): エネルギー劣化ネットワーク(EDeN)
- Authors: Jamie Nicholas Shelley, Optishell Consultancy
- Abstract要約: フレームワークは、潜在的な構造表現を通じて経験の遺伝的伝達を開発しようとします。
成功した経路は、時代ごとのスパイク分布の安定性によって定義される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper and accompanying Python and C++ Framework is the product of the
authors perceived problems with narrow (Discrimination based) AI. (Artificial
Intelligence) The Framework attempts to develop a genetic transfer of
experience through potential structural expressions using a common
regulation/exchange value (energy) to create a model whereby neural
architecture and all unit processes are co-dependently developed by genetic and
real time signal processing influences; successful routes are defined by
stability of the spike distribution per epoch which is influenced by
genetically encoded morphological development biases.These principles are aimed
towards creating a diverse and robust network that is capable of adapting to
general tasks by training within a simulation designed for transfer learning to
other mediums at scale.
- Abstract(参考訳): この論文とそれに伴うPythonとC++ Frameworkは、狭義の(差別に基づく)AIで認識された問題の著者たちの製品である。
(Artificial Intelligence) The Framework attempts to develop a genetic transfer of experience through potential structural expressions using a common regulation/exchange value (energy) to create a model whereby neural architecture and all unit processes are co-dependently developed by genetic and real time signal processing influences; successful routes are defined by stability of the spike distribution per epoch which is influenced by genetically encoded morphological development biases.These principles are aimed towards creating a diverse and robust network that is capable of adapting to general tasks by training within a simulation designed for transfer learning to other mediums at scale.
関連論文リスト
- Self Expanding Convolutional Neural Networks [1.4330085996657045]
本稿では,学習中の畳み込みニューラルネットワーク(CNN)を動的に拡張する新しい手法を提案する。
我々は、単一のモデルを動的に拡張する戦略を採用し、様々な複雑さのレベルでチェックポイントの抽出を容易にする。
論文 参考訳(メタデータ) (2024-01-11T06:22:40Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
本稿では, 織物のメソスケールシミュレーションの代用として, リカレントニューラルネットワーク(RNN)モデルを提案する。
平均場モデルは、弾塑性挙動を表す包括的データセットを生成する。
シミュレーションでは、任意の6次元ひずみヒストリーを用いて、ランダムウォーキング時の応力を原課題として、循環荷重条件を目標課題として予測する。
論文 参考訳(メタデータ) (2023-11-22T14:47:54Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
本研究は,多目的進化解析アルゴリズムMO-EvoPruneDeepTLを提案する。
我々は、トランスファーラーニングを使用して、遺伝的アルゴリズムによって進化したスパース層に置き換えることで、ディープニューラルネットワークの最後の層を適応します。
実験の結果,提案手法は全ての目的に対して有望な結果が得られ,直接的な関係が示された。
論文 参考訳(メタデータ) (2023-02-20T19:33:38Z) - Sequence Learning Using Equilibrium Propagation [2.3361887733755897]
Equilibrium Propagation (EP) は、バックプロパゲーションのような従来の学習フレームワークに代わる、強力でより生物学的な代替手段である。
現代のホップフィールドネットワークにおける最近の発展を利用して、エネルギーベースモデルをさらに理解し、EPを用いた複雑なシーケンス分類タスクのためのソリューションを開発する。
論文 参考訳(メタデータ) (2022-09-14T20:01:22Z) - A developmental approach for training deep belief networks [0.46699574490885926]
ディープ信念ネットワーク(Deep belief Network、DBN)は、知覚データから環境の豊かな内部表現を抽出できるニューラルネットワークである。
階層のすべての層にまたがる接続重みを共同で更新できるDBNの反復学習アルゴリズムiDBNを提案する。
我々の研究は、神経認知発達のモデリングにiDBNを使うことへの道を開いた。
論文 参考訳(メタデータ) (2022-07-12T11:37:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
我々は、より深い畳み込みモデルを進化させるために、これまで提案されていた神経進化の枠組みを構築した。
異なる形状と大きさのカーネルを同一層内に共存させる畳み込み層配置を提案する。
提案したレイアウトにより、畳み込み層内の個々のカーネルのサイズと形状を、対応する新しい突然変異演算子で進化させることができる。
論文 参考訳(メタデータ) (2021-04-12T12:45:16Z) - Delta Schema Network in Model-based Reinforcement Learning [125.99533416395765]
この研究は、伝達学習の非効率性である人工知能の未解決問題に焦点が当てられている。
環境データからオブジェクトとアクション間の論理的関係を抽出できるスキーマネットワーク手法を拡張している。
本稿では,デルタネットワーク(DSN)をトレーニングし,環境の将来状態を予測し,前向きな報酬をもたらす計画行動を示すアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T15:58:25Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。