論文の概要: Reinforcement learning for optimization of variational quantum circuit
architectures
- arxiv url: http://arxiv.org/abs/2103.16089v1
- Date: Tue, 30 Mar 2021 05:46:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:44:01.646051
- Title: Reinforcement learning for optimization of variational quantum circuit
architectures
- Title(参考訳): 変分量子回路の最適化のための強化学習
- Authors: Mateusz Ostaszewski, Lea M. Trenkwalder, Wojciech Masarczyk, Eleanor
Scerri, Vedran Dunjko
- Abstract要約: 本稿では,アンスの空間を自律的に探索する強化学習アルゴリズムを提案する。
水素化リチウム(LiH)の基底状態エネルギーを推定する問題に対するアルゴリズムの性能について紹介する。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of Variational Quantum Eigensolvers (VQEs) has been in the
spotlight in recent times as they may lead to real-world applications of
near-term quantum devices. However, their performance depends on the structure
of the used variational ansatz, which requires balancing the depth and
expressivity of the corresponding circuit. In recent years, various methods for
VQE structure optimization have been introduced but the capacities of machine
learning to aid with this problem has not yet been fully investigated. In this
work, we propose a reinforcement learning algorithm that autonomously explores
the space of possible ans{\"a}tze, identifying economic circuits which still
yield accurate ground energy estimates. The algorithm is intrinsically
motivated, and it incrementally improves the accuracy of the result while
minimizing the circuit depth. We showcase the performance of our algorithm on
the problem of estimating the ground-state energy of lithium hydride (LiH). In
this well-known benchmark problem, we achieve chemical accuracy, as well as
state-of-the-art results in terms of circuit depth.
- Abstract(参考訳): 変分量子固有解法(VQEs)の研究は、短期量子デバイスの実世界の応用につながる可能性があるため、近年注目されている。
しかし、それらの性能は、対応する回路の深さと表現率のバランスを必要とする使用済み変分アンサッツの構造に依存する。
近年、vqe構造最適化の様々な手法が導入されているが、この問題を支援する機械学習の能力はまだ十分に研究されていない。
本研究では,現在なお正確な地盤エネルギー推定を行う経済回路を同定し,Ans{\"a}tzeの空間を自律的に探索する強化学習アルゴリズムを提案する。
アルゴリズムは本質的に動機付けされており、回路深さを最小化しながら結果の精度を漸進的に向上する。
本研究では, 水素化リチウム (LiH) の基底状態エネルギーを推定する問題に対するアルゴリズムの性能を示す。
このよく知られたベンチマーク問題では、化学的精度と回路深さの最先端結果を達成する。
関連論文リスト
- Quantum Circuit Optimization: Current trends and future direction [0.0]
量子回路最適化の最近の進歩を探求する。
解析アルゴリズム、量子アルゴリズム、機械学習に基づくアルゴリズム、ハイブリッド量子古典アルゴリズムについて論じる。
論文 参考訳(メタデータ) (2024-08-16T15:07:51Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
この論文は、ノイズの多い量子ハードウェアにおける機能量子回路の同定に焦点を当てている。
本稿では, テンソルを用いた量子回路の符号化, 環境力学の制約により, 可能な回路の探索空間を効率的に探索する。
様々なVQAを扱う際、我々のRLベースのQASは既存のQASよりも優れています。
論文 参考訳(メタデータ) (2024-02-21T12:30:39Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
本研究は、VQAデプロイメントにおける課題に対処するために設計されたカリキュラムベースの強化学習QAS(CRLQAS)を導入する。
このアルゴリズムは、(i)環境力学の3Dアーキテクチャを符号化し、回路の探索空間を効率的に探索する。
研究を容易にするため,雑音量子回路の計算効率を大幅に向上させる最適化シミュレータを開発した。
論文 参考訳(メタデータ) (2024-02-05T20:33:00Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
動的リー代数の階数を用いた変分量子回路のキャラクタリゼーションのための量子制御に着想を得た手法を提案する。
有望な接続は、リーランク、計算されたエネルギーの精度、および所定の回路アーキテクチャを介して目標状態を達成するために必要な深さとの間のものである。
論文 参考訳(メタデータ) (2022-09-28T20:24:53Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
本稿では,量子回路アーキテクチャを構築するための機械学習手法を提案する。
本稿では、この回路設計課題に取り組むために、ディープラーニング(PPR-DQL)フレームワークを用いた確率的ポリシー再利用を提案する。
論文 参考訳(メタデータ) (2021-12-10T19:07:56Z) - Gradient-free quantum optimization on NISQ devices [0.0]
重み依存学習の最近の進歩を考察し、適切な回路アーキテクチャとパラメータチューニングのトレードオフに対処する戦略を提案する。
遺伝的競合を介して回路を評価するNEATに基づくアルゴリズムの使用を検討し、パラメータ数を超えることにより問題を回避します。
論文 参考訳(メタデータ) (2020-12-23T10:24:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。