論文の概要: Quantum Circuit Optimization: Current trends and future direction
- arxiv url: http://arxiv.org/abs/2408.08941v1
- Date: Fri, 16 Aug 2024 15:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 23:26:14.962486
- Title: Quantum Circuit Optimization: Current trends and future direction
- Title(参考訳): 量子回路最適化の現状と今後の方向性
- Authors: Geetha Karuppasamy, Varun Puram, Stevens Johnson, Johnson P Thomas,
- Abstract要約: 量子回路最適化の最近の進歩を探求する。
解析アルゴリズム、量子アルゴリズム、機械学習に基づくアルゴリズム、ハイブリッド量子古典アルゴリズムについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Optimization of quantum circuits for a given problem is very important in order to achieve faster calculations as well as reduce errors due to noise. Optimization has to be achieved while ensuring correctness at all times. In this survey paper, recent advancements in quantum circuit optimization are explored. Both hardware independent as well as hardware dependent optimization are presented. State-of-the-art methods for optimizing quantum circuits, including analytical algorithms, heuristic algorithms, machine learning-based algorithms, and hybrid quantum-classical algorithms are discussed. Additionally, the advantages and disadvantages of each method and the challenges associated with them are highlighted. Moreover, the potential research opportunities in this field are also discussed.
- Abstract(参考訳): 与えられた問題に対する量子回路の最適化は、より高速な計算を実現し、ノイズによる誤差を減らすために非常に重要である。
最適化は常に正確性を確保しながら達成しなければならない。
本稿では,近年の量子回路最適化の進歩について述べる。
ハードウェアに依存しない最適化だけでなく、ハードウェアに依存しない最適化も提示される。
解析アルゴリズム,ヒューリスティックアルゴリズム,機械学習に基づくアルゴリズム,ハイブリッド量子古典アルゴリズムなど,量子回路を最適化するための最先端手法について論じる。
さらに、各手法の利点と欠点とそれに関連する課題が強調される。
また、この分野での潜在的研究機会についても論じる。
関連論文リスト
- Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects [0.0]
本稿では,論理回路設計とコンパイル最適化のステップを組み合わせて,アルゴリズムレベルから量子ハードウェアにまたがる統合設計と最適化スキームの実現可能性について検討する。
AIアルゴリズムの異常な認知と学習能力を活用することで、手作業による設計コストを削減し、実行の精度と効率を高め、ハードウェア上での量子アルゴリズムの優位性の実装と検証を容易にする。
論文 参考訳(メタデータ) (2024-06-30T15:50:10Z) - Harnessing Inferior Solutions For Superior Outcomes: Obtaining Robust Solutions From Quantum Algorithms [0.0]
我々は、ロバストな最適化問題に取り組むために量子アルゴリズムを適用する。
本稿では、ロバストな最適解を得るための2つの革新的な方法を提案する。
これらはエネルギーセクター内の2つのユースケースに適用される。
論文 参考訳(メタデータ) (2024-04-25T17:32:55Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Challenges and Opportunities in Quantum Optimization [14.7608536260003]
量子コンピュータの最近の進歩は、ブラトフォース古典シミュレーションを超えるスケールで問題を解決する能力を示している。
計算機科学や物理学全般において、主要な最適化問題に対するアプローチは様々である。
論文 参考訳(メタデータ) (2023-12-04T19:00:44Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Optimization Applications as Quantum Performance Benchmarks [0.0]
組合せ最適化は、今後数年間における量子計算の主要なユースケースの1つとして期待されている。
従来の最適化アルゴリズムの特徴付け手法に着想を得て,Max-Cut問題を解くことで得られる解の質を分析した。
これは量子コンピュータのための高度なベンチマークフレームワークの開発を導くために使われる。
論文 参考訳(メタデータ) (2023-02-05T01:56:06Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。