When Infodemic Meets Epidemic: a Systematic Literature Review
- URL: http://arxiv.org/abs/2210.04612v1
- Date: Mon, 3 Oct 2022 21:04:30 GMT
- Title: When Infodemic Meets Epidemic: a Systematic Literature Review
- Authors: Chaimae Asaad, Imane Khaouja, Mounir Ghogho, Karim Ba\"ina
- Abstract summary: Social media offer significant amounts of data that can be leveraged for bio-surveillance.
This systematic literature review provides a methodical overview of the integration of social media in different epidemic-related contexts.
- Score: 3.3454373538792543
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Epidemics and outbreaks present arduous challenges requiring both individual
and communal efforts. Social media offer significant amounts of data that can
be leveraged for bio-surveillance. They also provide a platform to quickly and
efficiently reach a sizeable percentage of the population, hence their
potential impact on various aspects of epidemic mitigation. The general
objective of this systematic literature review is to provide a methodical
overview of the integration of social media in different epidemic-related
contexts. Three research questions were conceptualized for this review,
resulting in over 10000 publications collected in the first PRISMA stage, 129
of which were selected for inclusion. A thematic method-oriented synthesis was
undertaken and identified 5 main themes related to social media enabled
epidemic surveillance, misinformation management, and mental health. Findings
uncover a need for more robust applications of the lessons learned from
epidemic post-mortem documentation. A vast gap exists between retrospective
analysis of epidemic management and result integration in prospective studies.
Harnessing the full potential of social media in epidemic related tasks
requires streamlining the results of epidemic forecasting, public opinion
understanding and misinformation propagation, all while keeping abreast of
potential mental health implications. Pro-active prevention has thus become
vital for epidemic curtailment and containment.
Related papers
- SPEED++: A Multilingual Event Extraction Framework for Epidemic Prediction and Preparedness [73.73883111570458]
We introduce the first multilingual Event Extraction framework for extracting epidemic event information for a wide range of diseases and languages.
Annotating data in every language is infeasible; thus we develop zero-shot cross-lingual cross-disease models.
Our framework can provide epidemic warnings for COVID-19 in its earliest stages in Dec 2019 from Chinese Weibo posts without any training in Chinese.
arXiv Detail & Related papers (2024-10-24T03:03:54Z) - Intervention strategies for misinformation sharing on social media: A bibliometric analysis [1.8020166013859684]
Inaccurate shared information causes confusion, can adversely affect mental health, and can lead to mis-informed decision-making.
This study explores the typology of intervention strategies for addressing misinformation sharing on social media.
It identifies 4 important clusters - cognition-based, automated-based, information-based, and hybrid-based.
arXiv Detail & Related papers (2024-09-26T08:38:15Z) - Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
We develop a framework to extract and analyze epidemic-related events from social media posts.
Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics.
We show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox.
arXiv Detail & Related papers (2024-04-02T06:31:17Z) - Modeling the amplification of epidemic spread by misinformed populations [41.31724592098777]
We employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data.
We present a worst-case scenario in which a heavily misinformed population would result in an additional 14% of the U.S. population becoming infected over the course of the COVID-19 epidemic.
arXiv Detail & Related papers (2024-02-17T18:01:43Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy.
Existing studies rely on the aggregation of traditional statistical models and epidemic spread theory.
We propose a novel framework, Social Media enhAnced pandemic knowledge based on the extracted events and relationships.
arXiv Detail & Related papers (2021-08-08T15:46:05Z) - Digital Epidemiology: A review [0.0]
The epidemiology has recently witnessed great advances based on computational models.
Big Data along with apps are enabling for validating and refining models with real world data at scale.
Ebolas have to be approached from the lens of complexity as they require systemic solutions.
arXiv Detail & Related papers (2021-04-08T08:45:20Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Plague Dot Text: Text mining and annotation of outbreak reports of the
Third Plague Pandemic (1894-1952) [0.8114550931351494]
Interdisciplinary research investigates more than 100 reports from the third plague pandemic (1894- 1952)
Our goal is to develop structured accounts of some of the most significant concepts that were used to understand the epidemiology of the third plague pandemic around the globe.
arXiv Detail & Related papers (2020-02-04T17:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.