論文の概要: A New Algorithm for Discrete-Time Parameter Estimation
- arxiv url: http://arxiv.org/abs/2103.16653v1
- Date: Tue, 30 Mar 2021 19:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-02 09:21:23.381420
- Title: A New Algorithm for Discrete-Time Parameter Estimation
- Title(参考訳): 離散時間パラメータ推定のための新しいアルゴリズム
- Authors: Yingnan Cui, Joseph E. Gaudio and Anuradha M. Annaswamy
- Abstract要約: 未知パラメータの時間的変動が存在する場合、推定誤差は持続的な励起条件下でコンパクト集合に一様収束することを示す。
有限励起の条件下では、収束は未知のパラメータの時間変動に比例する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new discrete-time adaptive algorithm for parameter estimation of
a class of time-varying plants. The main contribution is the inclusion of a
time-varying gain matrix in the adjustment of the parameter estimates. We show
that in the presence of time-varying unknown parameters, the parameter
estimation error converges uniformly to a compact set under conditions of
persistent excitation, with the size of the compact set proportional to the
time-variation of the unknown parameters. Under conditions of finite
excitation, the convergence is asymptotic and non-uniform.
- Abstract(参考訳): 時間変化植物のクラスをパラメータ推定するための離散時間適応アルゴリズムを提案する。
主な貢献は、パラメータ推定の調整に時間変化の利得行列を含めることである。
時間変化のある未知パラメータが存在する場合、パラメータ推定誤差は、持続的な励起条件下でのコンパクトな集合に一様収束し、未知パラメータの時間変化に比例するコンパクトな集合のサイズを示す。
有限励起条件下では、収束は漸近的で非一様である。
関連論文リスト
- Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Convergence of Expectation-Maximization Algorithm with Mixed-Integer Optimization [5.319361976450982]
本稿では,特定の種類のEMアルゴリズムの収束を保証する一連の条件を紹介する。
本研究では,混合整数非線形最適化問題の解法として,反復アルゴリズムの新しい解析手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T11:42:46Z) - Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm [0.7252027234425334]
本稿では,新しい断熱パスに基づくパラメータ設定法を提案する。
本手法は, 3SAT問題に適用した場合の最適化コストを, サブ線形レベルに著しく低減する。
論文 参考訳(メタデータ) (2023-11-30T01:06:41Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
我々は,最大限界推定法を実装するための相互作用粒子系のクラスを開発する。
特に、この拡散の定常測度のパラメータ境界がギブス測度の形式であることを示す。
特定の再スケーリングを用いて、このシステムの幾何学的エルゴディディティを証明し、離散化誤差を限定する。
時間的に一様で、粒子の数で増加しない方法で。
論文 参考訳(メタデータ) (2023-03-23T16:50:08Z) - Making SGD Parameter-Free [28.088227276891885]
我々のアルゴリズムは概念的には単純で、高い確率保証を持ち、未知の勾配ノルム、滑らかさ、強い凸性に部分的に適応している。
結果の核心は,SGDステップサイズ選択のための新しいパラメータフリー証明書と,SGDのa-プリオリ境界が反復しないと仮定する時間一様濃度の結果である。
論文 参考訳(メタデータ) (2022-05-04T16:29:38Z) - Dynamics of Stochastic Momentum Methods on Large-scale, Quadratic Models [0.2741266294612776]
我々は高次元ランダム最小二乗問題に対して運動量を持つ勾配アルゴリズムのクラスを解析する。
固定運動量パラメータを持つ(小バッチ)運動量では,ステップサイズを正確に調整した場合,SGDよりも実際の性能向上は得られないことを示す。
非強凸条件では、運動量を用いてSGDよりも大きな改善が得られる。
論文 参考訳(メタデータ) (2021-06-07T15:08:24Z) - The Variational Method of Moments [65.91730154730905]
条件モーメント問題は、観測可能量の観点から構造因果パラメータを記述するための強力な定式化である。
OWGMMの変動最小値再構成により、条件モーメント問題に対する非常に一般的な推定器のクラスを定義する。
同じ種類の変分変換に基づく統計的推測のためのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-12-17T07:21:06Z) - The Convergence Indicator: Improved and completely characterized
parameter bounds for actual convergence of Particle Swarm Optimization [68.8204255655161]
我々は、粒子が最終的に単一点に収束するか、分岐するかを計算するのに使用できる新しい収束指標を導入する。
この収束指標を用いて、収束群につながるパラメータ領域を完全に特徴づける実際の境界を提供する。
論文 参考訳(メタデータ) (2020-06-06T19:08:05Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要であることを厳格に証明している。
これは加速収束を示すアルゴリズムの特性を提供する。
論文 参考訳(メタデータ) (2020-02-28T00:32:47Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z) - Orthogonal Statistical Learning [49.55515683387805]
人口リスクが未知のニュアンスパラメータに依存するような環境では,統計学習における非漸近的過剰リスク保証を提供する。
人口リスクがNeymanityと呼ばれる条件を満たす場合,メタアルゴリズムによって達成される過剰リスクに対するニュアンス推定誤差の影響は2次であることを示す。
論文 参考訳(メタデータ) (2019-01-25T02:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。