論文の概要: Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2312.00077v3
- Date: Mon, 22 Jan 2024 07:15:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 20:07:08.053587
- Title: Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm
- Title(参考訳): 量子近似最適化アルゴリズムのための断熱パッセージに基づくパラメータ設定
- Authors: Mingyou Wu, Hanwu Chen
- Abstract要約: 本稿では,新しい断熱パスに基づくパラメータ設定法を提案する。
本手法は, 3SAT問題に適用した場合の最適化コストを, サブ線形レベルに著しく低減する。
- 参考スコア(独自算出の注目度): 0.7252027234425334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) exhibits significant
potential for tackling combinatorial optimization problems. Despite its promise
for near-term quantum devices, a major challenge in applying QAOA lies in the
cost of circuit runs associated with parameter optimization. Existing methods
for parameter setting generally incur at least a superlinear cost concerning
the depth p of QAOA. In this study, we propose a novel adiabatic-passage-based
parameter setting method that remarkably reduces the optimization cost,
specifically when applied to the 3-SAT problem, to a sublinear level. Beginning
with an analysis of the random model of the specific problem, this method
applies a problem-dependent preprocessing on the problem Hamiltonian
analytically, effectively segregating the magnitude of parameters from the
scale of the problem. Consequently, a problem-independent initialization is
achieved without incurring any optimization cost or pre-computation.
Furthermore, the parameter space is adjusted based on the continuity of the
optimal adiabatic passage, resulting in a reduction in the disparity of
parameters between adjacent layers of QAOA. By leveraging this continuity, the
cost to find quasi-optimal parameters is significantly reduced to a sublinear
level.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、組合せ最適化問題に対処する大きな可能性を示す。
短期量子デバイスへの期待にもかかわらず、QAOAを適用する上での大きな課題は、パラメータ最適化に関連する回路実行コストにある。
パラメータ設定の既存の方法は、QAOAの深さpに関する少なくとも超線形コストを生じる。
本研究では, 3SAT 問題に適用した場合の最適化コストを, サブリニアレベルに著しく低減する, 拡張型パスベースのパラメータ設定手法を提案する。
特定の問題のランダムモデルの解析から始め,問題ハミルトニアンに対して問題依存前処理を適用し,問題の規模からパラメータの大きさを効果的に分離する。
これにより、最適化コストや事前計算を伴わずに問題のない初期化が実現される。
さらに、最適断熱通路の連続性に基づいてパラメータ空間を調整し、QAOAの隣接層間のパラメータの相違を低減させる。
この連続性を活用することにより、準最適パラメータを見つけるコストは、サブ線形レベルに大幅に削減される。
関連論文リスト
- Linearly simplified QAOA parameters and transferability [0.6834295298053009]
量子近似アルゴリズム最適化(QAOA)は、量子コンピュータを用いて最適化問題を解く方法を提供する。
ランダムイジングモデルのインスタンスと最大カット問題のインスタンスに対して得られた数値結果について述べる。
論文 参考訳(メタデータ) (2024-05-01T17:34:32Z) - Hybrid GRU-CNN Bilinear Parameters Initialization for Quantum
Approximate Optimization Algorithm [7.502733639318316]
本稿では, Gated Recurrent Units (GRU), Conal Neural Networks (CNN), and a bilinear strategy as an innovative alternative to conventional approximation for predicting optimal parameters of QAOA circuits。
我々は、GRU-CNN最適化から得られた参照パラメータを用いて、より深い深さでQAOA回路パラメータに初期化するための双線形戦略を用いる。
論文 参考訳(メタデータ) (2023-11-14T03:00:39Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
本稿では,変分量子アルゴリズムにおけるパラメータ化回路の最適化手法を提案する。
本稿では,量子近似最適化アルゴリズム (QAOA) を最大$k$-cut問題に適用した例について述べる。
論文 参考訳(メタデータ) (2023-10-16T12:56:22Z) - A Depth-Progressive Initialization Strategy for Quantum Approximate
Optimization Algorithm [0.0]
まず,QAOAにおける最適パラメータのパターンを2方向から議論する。
次に、探索空間の境界を決定するために使用される予想の対称性と周期性について議論する。
本稿では,従来の最適パラメータ間の差を考慮し,新しい初期パラメータを予測する戦略を提案する。
論文 参考訳(メタデータ) (2022-09-22T23:49:11Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
アルゴリズムの高速化のために,パラメータ再起動方式が提案されている。
本論文では,非滑らかな問題を解くアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:06:27Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。