QPack: Quantum Approximate Optimization Algorithms as universal
benchmark for quantum computers
- URL: http://arxiv.org/abs/2103.17193v3
- Date: Tue, 19 Apr 2022 12:14:13 GMT
- Title: QPack: Quantum Approximate Optimization Algorithms as universal
benchmark for quantum computers
- Authors: Koen Mesman, Zaid Al-Ars, Matthias M\"oller
- Abstract summary: We present QPack, a universal benchmark for Noisy Intermediate-Scale Quantum (NISQ) computers.
QPack evaluates the maximum problem size a quantum computer can solve, the required runtime, as well as the achieved accuracy.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we present QPack, a universal benchmark for Noisy
Intermediate-Scale Quantum (NISQ) computers based on Quantum Approximate
Optimization Algorithms (QAOA). Unlike other evaluation metrics in the field,
this benchmark evaluates not only one, but multiple important aspects of
quantum computing hardware: the maximum problem size a quantum computer can
solve, the required runtime, as well as the achieved accuracy. The applications
MaxCut, dominating set and traveling salesman are included to provide variation
in resource requirements. This will allow for a diverse benchmark that promotes
optimal design considerations, avoiding hardware implementations for specific
applications. We also discuss the design aspects that are taken in
consideration for the QPack benchmark, with critical quantum benchmark
requirements in mind. An implementation is presented, providing practical
metrics. QPack is presented as a hardware agnostic benchmark by making use of
the XACC library. We demonstrate the application of the benchmark on various
IBM machines, as well as a range of simulators.
Related papers
- QuAS: Quantum Application Score for benchmarking the utility of quantum computers [0.0]
This paper presents a revised holistic scoring method called the Quantum Application Score (QuAS)
We discuss how to integrate both and thereby obtain an application-level metric that better quantifies the practical utility of quantum computers.
We evaluate the new metric on different hardware platforms such as D-Wave and IBM as well as quantum simulators of Quantum Inspire and Rigetti.
arXiv Detail & Related papers (2024-06-06T09:39:58Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances [0.0]
This paper establishes a new protocol to generate graph instances with their associated near-optimal minor-embedding mappings to D-Wave Quantum Annealers.
We use this method to benchmark QA on large instances of unconstrained and constrained optimization problems and compare the performance of the QPU with efficient classical solvers.
arXiv Detail & Related papers (2024-05-02T15:19:39Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - QPack Scores: Quantitative performance metrics for application-oriented
quantum computer benchmarking [1.0323063834827415]
This paper presents the benchmark score definitions of QPack, an application-oriented cross-platform benchmarking suite for quantum computers and simulators.
A comparison is made between various quantum computer simulators, running both locally and on vendors' remote cloud services.
arXiv Detail & Related papers (2022-05-24T15:18:24Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Application-Oriented Performance Benchmarks for Quantum Computing [0.0]
benchmarking suite is designed to be readily accessible to a broad audience of users.
Our methodology is constructed to anticipate advances in quantum computing hardware that are likely to emerge in the next five years.
arXiv Detail & Related papers (2021-10-07T01:45:06Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way [0.0]
We introduce a new benchmark, dubbed Atos Q-score (TM)
The Q-score measures the maximum number of qubits that can be used effectively to solve the MaxCut optimization problem.
We provide an open-source implementation of Q-score that makes it easy to compute the Q-score of any quantum hardware.
arXiv Detail & Related papers (2021-02-25T16:26:23Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.