論文の概要: Detecting over/under-translation errors for determining adequacy in
human translations
- arxiv url: http://arxiv.org/abs/2104.00267v1
- Date: Thu, 1 Apr 2021 06:06:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-03 03:48:42.265188
- Title: Detecting over/under-translation errors for determining adequacy in
human translations
- Title(参考訳): 翻訳の適切性判定のための翻訳過誤の検出
- Authors: Prabhakar Gupta, Ridha Juneja, Anil Nelakanti, Tamojit Chatterjee
- Abstract要約: 本稿では,翻訳評価における誤りチェックの一部として,OT/UT(Over and Under translations)の新たな手法を提案する。
我々は、機械翻訳(mt)出力に制限はせず、特に人間が生成した翻訳パイプラインでアプリケーションをターゲットにしています。
本システムの目的は、人間の翻訳ビデオ字幕からOT/UTエラーを高いエラーリコールで識別することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach to detecting over and under translations (OT/UT)
as part of adequacy error checks in translation evaluation. We do not restrict
ourselves to machine translation (MT) outputs and specifically target
applications with human generated translation pipeline. The goal of our system
is to identify OT/UT errors from human translated video subtitles with high
error recall. We achieve this without reference translations by learning a
model on synthesized training data. We compare various classification networks
that we trained on embeddings from pre-trained language model with our best
hybrid network of GRU + CNN achieving 89.3% accuracy on high-quality
human-annotated evaluation data in 8 languages.
- Abstract(参考訳): 本稿では,翻訳評価における誤りチェックの一部として,OT/UT(Over and Under translations)の新たな手法を提案する。
我々は機械翻訳(MT)の出力に制限を課しておらず、特に人間の生成した翻訳パイプラインでアプリケーションをターゲットにしています。
本システムの目的は、人間の翻訳ビデオ字幕からOT/UTエラーを高いエラーリコールで識別することである。
我々は、合成学習データに基づくモデルを学ぶことで、参照翻訳なしでこれを実現する。
事前学習した言語モデルから学習した様々な分類ネットワークと、最高のハイブリッドネットワークである gru + cnn を比較し、89.3%の精度を8言語で評価した。
関連論文リスト
- Advancing Translation Preference Modeling with RLHF: A Step Towards
Cost-Effective Solution [57.42593422091653]
人間のフィードバックによる強化学習の活用による翻訳品質の向上について検討する。
強力な言語能力を持つ報酬モデルは、翻訳品質の微妙な違いをより敏感に学習することができる。
論文 参考訳(メタデータ) (2024-02-18T09:51:49Z) - xCOMET: Transparent Machine Translation Evaluation through Fine-grained
Error Detection [21.116517555282314]
xCOMETは、機械翻訳評価アプローチのギャップを埋めるために設計されたオープンソースの学習メトリクスである。
文レベルの評価とエラースパン検出機能を統合し、あらゆるタイプの評価で最先端のパフォーマンスを示す。
また,ストレステストによるロバストネス解析を行い,xCOMETは局所的な臨界誤差や幻覚を同定できることを示す。
論文 参考訳(メタデータ) (2023-10-16T15:03:14Z) - Exploring Linguistic Similarity and Zero-Shot Learning for Multilingual
Translation of Dravidian Languages [0.34998703934432673]
我々はDravidian-Dravidian多言語翻訳のための単一デコーダニューラルマシン翻訳システムを構築した。
我々のモデルは、50%の言語方向で訓練された場合、大規模ピボットベースモデルの3 BLEU以内のスコアを得る。
論文 参考訳(メタデータ) (2023-08-10T13:38:09Z) - The Best of Both Worlds: Combining Human and Machine Translations for
Multilingual Semantic Parsing with Active Learning [50.320178219081484]
人文翻訳と機械翻訳の両方の長所を生かした能動的学習手法を提案する。
理想的な発話選択は、翻訳されたデータの誤りとバイアスを著しく低減することができる。
論文 参考訳(メタデータ) (2023-05-22T05:57:47Z) - Towards Fine-Grained Information: Identifying the Type and Location of
Translation Errors [80.22825549235556]
既存のアプローチでは、エラーの位置と型を同期的に考慮することはできない。
我々はtextbf の追加と textbfomission エラーを予測するために FG-TED モデルを構築した。
実験により,本モデルではエラータイプと位置の同時同定が可能であり,最先端の結果が得られた。
論文 参考訳(メタデータ) (2023-02-17T16:20:33Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
機械翻訳モデルは通常、トレーニングコーパスで稀な名前付きエンティティの翻訳を貧弱に生成することが示されている。
文中の名前付きエンティティ翻訳精度を向上させるために,大量のモノリンガルデータと知識ベースを利用するDenoising Entity Pre-training法であるDEEPを提案する。
論文 参考訳(メタデータ) (2021-11-14T17:28:09Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslateは、英語と絶滅危惧言語チェロキーとの翻訳のためのオンライン機械翻訳デモシステムである。
統計モデルとニューラルネットワークモデルの両方をサポートし、信頼性をユーザに通知するための品質評価を提供する。
論文 参考訳(メタデータ) (2021-07-30T17:58:54Z) - Computer Assisted Translation with Neural Quality Estimation and
Automatic Post-Editing [18.192546537421673]
本稿では,機械翻訳出力の品質推定と自動編集のためのエンドツーエンドのディープラーニングフレームワークを提案する。
我々のゴールは、誤り訂正の提案を提供することであり、解釈可能なモデルにより、人間の翻訳者の負担を軽減することである。
論文 参考訳(メタデータ) (2020-09-19T00:29:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。