論文の概要: CCSNet: a deep learning modeling suite for CO$_2$ storage
- arxiv url: http://arxiv.org/abs/2104.01795v1
- Date: Mon, 5 Apr 2021 06:56:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:18:10.006983
- Title: CCSNet: a deep learning modeling suite for CO$_2$ storage
- Title(参考訳): CCSNet:CO$2$ストレージのためのディープラーニングモデリングスイート
- Authors: Gege Wen, Catherine Hay, Sally M. Benson
- Abstract要約: CCSNetは、数値シミュレータが通常提供するすべての出力を生成する一連のディープラーニングモデルで構成されている。
結果は従来の数値シミュレータよりも10$3$から10$4$の速度です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Numerical simulation is an essential tool for many applications involving
subsurface flow and transport, yet often suffers from computational challenges
due to the multi-physics nature, highly non-linear governing equations,
inherent parameter uncertainties, and the need for high spatial resolutions to
capture multi-scale heterogeneity. We developed CCSNet, a general-purpose
deep-learning modeling suite that can act as an alternative to conventional
numerical simulators for carbon capture and storage (CCS) problems where CO$_2$
is injected into saline aquifers in 2d-radial systems. CCSNet consists of a
sequence of deep learning models producing all the outputs that a numerical
simulator typically provides, including saturation distributions, pressure
buildup, dry-out, fluid densities, mass balance, solubility trapping, and sweep
efficiency. The results are 10$^3$ to 10$^4$ times faster than conventional
numerical simulators. As an application of CCSNet illustrating the value of its
high computational efficiency, we developed rigorous estimation techniques for
the sweep efficiency and solubility trapping.
- Abstract(参考訳): 数値シミュレーションは、地下の流れや輸送に関わる多くのアプリケーションにとって必須のツールであるが、多面体の性質、高非線形支配方程式、固有のパラメータの不確実性、マルチスケールの不均一性を捉えるための高空間分解能の必要性による計算上の課題に悩まされることが多い。
我々は,CO$_2$を2d-放射系の塩類帯水層に注入する従来の数値シミュレータの代替として機能する汎用ディープラーニングモデリングスイートであるCSNetを開発した。
CCSNetは、飽和分布、圧力上昇、ドライアウト、流体密度、質量収支、溶解性トラップ、スイープ効率など、数値シミュレータが一般的に提供するすべての出力を生成する一連のディープラーニングモデルで構成されている。
その結果,従来の数値シミュレータの10$^3$から10$^4$$の速度が得られた。
ccsnetの計算効率の値を示す応用として,スイープ効率と溶解性トラッピングのための厳密な推定手法を開発した。
関連論文リスト
- Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - SciAI4Industry -- Solving PDEs for industry-scale problems with deep
learning [1.642765885524881]
ユーザによるHPCインフラストラクチャの管理を必要とせずに,クラウド上で並列にトレーニングデータをシミュレートする分散プログラミングAPIを導入する。
我々は3D Navier-Stokes方程式を解くために大規模ニューラルネットワークを訓練し、多孔質媒質中の3D CO2フローをシミュレーションする。
CO2の例では、商用の炭素捕獲・貯蔵(CCS)プロジェクトに基づくトレーニングデータセットをシミュレートし、従来の数値シミュレータよりも5桁高速で3200倍安い200万以上のセルを持つ3Dグリッド上で、CO2フローシミュレーションのためのニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-11-23T05:15:32Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
種々の境界条件下で定常なナビエ・ストークス方程式を解くために弱教師付きアプローチを開発する。
ラベル付きシミュレーションデータを使わずに最先端の結果を得られる。
我々は、N-S方程式の数値解を生成する複雑さを増大させる積み重ねモデルを訓練する。
論文 参考訳(メタデータ) (2021-12-13T05:08:55Z) - Using Machine Learning to Augment Coarse-Grid Computational Fluid
Dynamics Simulations [2.7892067588273517]
本研究では,高レイノルズ数での乱流の粗いグリッドシミュレーションにより発生する数値誤差を補正する機械学習(ML)手法を提案する。
提案手法は,高分解能な解軌道を得ることができるML-PDEハイブリッド解法である。
論文 参考訳(メタデータ) (2020-09-30T19:29:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFDは畳み込みニューラルネットワーク(CNN)ベースのモデルであり、非一様定常層流問題に対する解を効率的に近似する。
DeepCFDを用いることで、標準CFD手法と比較して最大3桁の高速化を低エラー率で実現した。
論文 参考訳(メタデータ) (2020-04-19T12:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。