論文の概要: Improving the Expressive Power of Graph Neural Network with Tinhofer
Algorithm
- arxiv url: http://arxiv.org/abs/2104.01848v1
- Date: Mon, 5 Apr 2021 10:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:28:36.457068
- Title: Improving the Expressive Power of Graph Neural Network with Tinhofer
Algorithm
- Title(参考訳): Tinhoferアルゴリズムによるグラフニューラルネットワークの表現力向上
- Authors: Alan J.X. Guo, Qing-Hu Hou, Ou Wu
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフベースのデータ処理のパワーのために急速に進歩している。
ほとんどのGNNはメッセージパッシング方式に従い、その表現力はワイスファイラー・リーマン(WL)テストの識別能力によって数学的に制限される。
本稿では、WLテストの限界を理論的に破るWeisfeiler-Lehman-Tinhofer GNN(WLT-GNN)と呼ばれるメッセージパッシング方式のバリエーションを提案する。
- 参考スコア(独自算出の注目度): 3.158346511479111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Graph Neural Network (GNN) has bloomly progressed for its
power in processing graph-based data. Most GNNs follow a message passing
scheme, and their expressive power is mathematically limited by the
discriminative ability of the Weisfeiler-Lehman (WL) test. Following Tinhofer's
research on compact graphs, we propose a variation of the message passing
scheme, called the Weisfeiler-Lehman-Tinhofer GNN (WLT-GNN), that theoretically
breaks through the limitation of the WL test. In addition, we conduct
comparative experiments and ablation studies on several well-known datasets.
The results show that the proposed methods have comparable performances and
better expressive power on these datasets.
- Abstract(参考訳): 近年、グラフニューラルネットワーク(GNN)は、グラフベースのデータ処理のパワーのために急速に進歩している。
ほとんどのGNNはメッセージパッシング方式に従い、その表現力はWeisfeiler-Lehman (WL)テストの識別能力によって数学的に制限される。
Tinhoferのコンパクトグラフの研究に続いて、WLテストの制限を理論的に破るWeisfeiler-Lehman-Tinhofer GNN(WLT-GNN)と呼ばれるメッセージパッシングスキームのバリエーションを提案する。
さらに、いくつかのよく知られたデータセットについて比較実験およびアブレーション研究を行う。
その結果,提案手法はこれらのデータセットに対して同等の性能と表現力を有することがわかった。
関連論文リスト
- Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints [7.605749412696919]
グラフニューラルネットワーク(GNN)はグラフ構造化データの処理に優れるが、リンク予測タスクでは性能が劣ることが多い。
グラフラプラシア行列の固有基底に誘導された部分グラフを埋め込むことによりGNNの表現性を高める新しい手法を提案する。
提案手法は,PubMedとOGBL-Vesselのデータセットから,5%と10%のデータしか必要とせず,20倍と10倍の高速化を実現する。
論文 参考訳(メタデータ) (2024-08-22T12:22:00Z) - Graph Reasoning Networks [9.18586425686959]
Graph Reasoning Networks (GRNs) は、グラフ表現と学習したグラフ表現の長所と、微分可能満足度解法に基づく推論モジュールを組み合わせるための新しいアプローチである。
実世界のデータセットの結果は、GNNに匹敵するパフォーマンスを示している。
合成データセットの実験は、新しく提案された手法の可能性を示している。
論文 参考訳(メタデータ) (2024-07-08T10:53:49Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
標準グラフニューラルネットワーク (GNN) はWeisfeiler-Lehman (WL) アルゴリズムよりも差別的な表現を生成する。
また、白い入力を持つ単純な畳み込みアーキテクチャは、グラフの閉経路をカウントする同変の特徴を生じさせることを示した。
論文 参考訳(メタデータ) (2022-05-19T18:40:25Z) - A Novel Higher-order Weisfeiler-Lehman Graph Convolution [2.658812114255374]
2次元Weisfeiler-Lehmanテストに基づく新しいグラフ畳み込み演算子を提案する。
得られた2-WL-GNNアーキテクチャは,既存のGNNアプローチよりも識別性が高いことを示す。
論文 参考訳(メタデータ) (2020-07-01T09:32:01Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。