論文の概要: Graph Reasoning Networks
- arxiv url: http://arxiv.org/abs/2407.05816v1
- Date: Mon, 8 Jul 2024 10:53:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:00:10.811481
- Title: Graph Reasoning Networks
- Title(参考訳): グラフ推論ネットワーク
- Authors: Markus Zopf, Francesco Alesiani,
- Abstract要約: Graph Reasoning Networks (GRNs) は、グラフ表現と学習したグラフ表現の長所と、微分可能満足度解法に基づく推論モジュールを組み合わせるための新しいアプローチである。
実世界のデータセットの結果は、GNNに匹敵するパフォーマンスを示している。
合成データセットの実験は、新しく提案された手法の可能性を示している。
- 参考スコア(独自算出の注目度): 9.18586425686959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) are the predominant approach for graph-based machine learning. While neural networks have shown great performance at learning useful representations, they are often criticized for their limited high-level reasoning abilities. In this work, we present Graph Reasoning Networks (GRNs), a novel approach to combine the strengths of fixed and learned graph representations and a reasoning module based on a differentiable satisfiability solver. While results on real-world datasets show comparable performance to GNN, experiments on synthetic datasets demonstrate the potential of the newly proposed method.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフベースの機械学習の主要なアプローチである。
ニューラルネットワークは有用な表現を学ぶのに優れた性能を示してきたが、高いレベルの推論能力に制限があるとしてしばしば批判されている。
本研究では,グラフ推論ネットワーク(GRNs, Graph Reasoning Networks, GRNs)を提案する。
実世界のデータセットでは、GNNに匹敵する性能を示す一方で、合成データセットの実験では、新たに提案された手法の可能性を示す。
関連論文リスト
- The Expressive Power of Graph Neural Networks: A Survey [9.08607528905173]
定義の異なる表現力向上モデルに関する第1回調査を行う。
モデルは、グラフ機能拡張、グラフトポロジ拡張、GNNアーキテクチャ拡張という3つのカテゴリに基づいてレビューされる。
論文 参考訳(メタデータ) (2023-08-16T09:12:21Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet
Energy [103.74640329539389]
特徴選択と識別可能な$k $-NNグラフ学習を同時に行うディープFS法を提案する。
我々は、ニューラルネットワークで$ k $-NNグラフを学習する際の非微分可能性問題に対処するために、最適輸送理論を用いる。
本モデルの有効性を,合成データセットと実世界のデータセットの両方で広範な実験により検証する。
論文 参考訳(メタデータ) (2023-05-21T08:15:55Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Theory of Graph Neural Networks: Representation and Learning [44.02161831977037]
グラフニューラルネットワーク(GNN)は、ノードやグラフ、ポイントの設定を予測するための一般的な学習モデルになっている。
本稿では、広く使われているメッセージパッシングGNNと高次GNNの近似と学習特性に関する、新たな理論結果の選択について要約する。
論文 参考訳(メタデータ) (2022-04-16T02:08:50Z) - Capsule Graph Neural Networks with EM Routing [8.632437524560133]
本稿では、EMルーティング機構(CapsGNNEM)を用いて、高品質なグラフ埋め込みを生成する新しいCapsule Graph Neural Networkを提案する。
多くの実世界のグラフデータセットに対する実験結果から、提案したCapsGNNEMはグラフ分類タスクにおいて9つの最先端モデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-10-18T06:23:37Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。