Autoencoder-based Representation Learning from Heterogeneous
Multivariate Time Series Data of Mechatronic Systems
- URL: http://arxiv.org/abs/2104.02784v2
- Date: Thu, 8 Apr 2021 12:39:35 GMT
- Title: Autoencoder-based Representation Learning from Heterogeneous
Multivariate Time Series Data of Mechatronic Systems
- Authors: Karl-Philipp Kortmann, Moritz Fehsenfeld and Mark Wielitzka
- Abstract summary: We present a method for unsupervised feature extraction using autoencoder networks that specifically addresses the heterogeneous nature of the database.
Three public datasets of mechatronic systems from different application domains are used to validate the results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sensor and control data of modern mechatronic systems are often available as
heterogeneous time series with different sampling rates and value ranges.
Suitable classification and regression methods from the field of supervised
machine learning already exist for predictive tasks, for example in the context
of condition monitoring, but their performance scales strongly with the number
of labeled training data. Their provision is often associated with high effort
in the form of person-hours or additional sensors. In this paper, we present a
method for unsupervised feature extraction using autoencoder networks that
specifically addresses the heterogeneous nature of the database and reduces the
amount of labeled training data required compared to existing methods. Three
public datasets of mechatronic systems from different application domains are
used to validate the results.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z) - Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression [1.5039745292757671]
We propose an approach to detect the dataset shifts effectively for regression problems.
Our approach is based on the inductive conformal anomaly detection and utilizes a variational autoencoder for regression model.
We demonstrate our approach by using an advanced emergency braking system implemented in an open-source simulator for self-driving cars.
arXiv Detail & Related papers (2021-04-14T03:46:37Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - On Disentanglement in Gaussian Process Variational Autoencoders [3.403279506246879]
We introduce a class of models recently introduced that have been successful in different tasks on time series data.
Our model exploits the temporal structure of the data by modeling each latent channel with a GP prior and employing a structured variational distribution.
We provide evidence that we can learn meaningful disentangled representations on real-world medical time series data.
arXiv Detail & Related papers (2021-02-10T15:49:27Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
A number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors.
This paper proposes the use of a relatively new time series representation named Shapelet Transform to autonomously identify anomalies in SHM data.
arXiv Detail & Related papers (2020-08-31T01:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.