Acoustically induced coherent spin trapping
- URL: http://arxiv.org/abs/2104.03011v1
- Date: Wed, 7 Apr 2021 09:32:02 GMT
- Title: Acoustically induced coherent spin trapping
- Authors: A. Hern\'andez-M\'inguez, A. V. Poshakinskiy, M. Hollenbach, P. V.
Santos and G. V. Astakhov
- Abstract summary: Hybrid spin-optomechanical quantum systems offer high flexibility, integrability and applicability for quantum science and technology.
On-chip surface acoustic waves (SAWs) can efficiently drive spin transitions in the ground states (GSs) of atomic-scale, color centre qubits.
We show that strain-induced spin interactions within their optically excited state (ES) can exceed by two orders of magnitude the ones within the GS.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid spin-optomechanical quantum systems offer high flexibility,
integrability and applicability for quantum science and technology.
Particularly, on-chip surface acoustic waves (SAWs) can efficiently drive spin
transitions in the ground states (GSs) of atomic-scale, color centre qubits,
which are forbidden in case of the more frequently used electromagnetic fields.
Here, we demonstrate that strain-induced spin interactions within their
optically excited state (ES) can exceed by two orders of magnitude the ones
within the GS. This gives rise to novel physical phenomena, such as the
acoustically induced coherent spin trapping (CST) unvealed here. The CST
manifests itself as the spin preservation along one particular direction under
the coherent drive of the GS and ES by the same acoustic field. Our findings
provide new opportunities for the coherent control of spin qubits with
dynamically generated strain fields that can lead towards the realization of
future spin-acoustic quantum devices.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Quantum-induced Stochastic Optomechanical Dynamics [0.0]
Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization.
For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments.
arXiv Detail & Related papers (2024-01-29T19:30:21Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Multi-Stability in Cavity QED with Spin-Orbit Coupled Bose-Einstein
Condensate [0.0]
We investigate the occurrence of steady-state multi-stability in a cavity system containing spin-orbit coupled Bose-Einstein condensate.
We show the emergence of multi-stable behavior of cavity photon number, which is unlike with previous investigation on cavity-atom systems.
We illustrate the emergence of secondary interface mediated by increasing the mechanical dissipation rate of the pseudo-spin states.
arXiv Detail & Related papers (2023-02-04T11:24:22Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Unconventional quantum sound-matter interactions in
spin-optomechanical-crystal hybrid systems [2.5432277893532116]
We show that quasi-chiral sound-matter interactions can occur, with tunable ranges from bidirectional to quasi-unidirectional.
This work expands the present exploration of quantum phononics and can have wide applications in quantum simulation and quantum information processing.
arXiv Detail & Related papers (2021-04-19T07:47:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.