Unconventional quantum sound-matter interactions in
spin-optomechanical-crystal hybrid systems
- URL: http://arxiv.org/abs/2104.09101v1
- Date: Mon, 19 Apr 2021 07:47:02 GMT
- Title: Unconventional quantum sound-matter interactions in
spin-optomechanical-crystal hybrid systems
- Authors: Xing-Liang Dong, Peng-Bo Li, Tao Liu, and Franco Nori
- Abstract summary: We show that quasi-chiral sound-matter interactions can occur, with tunable ranges from bidirectional to quasi-unidirectional.
This work expands the present exploration of quantum phononics and can have wide applications in quantum simulation and quantum information processing.
- Score: 2.5432277893532116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We predict a set of unusual quantum acoustic phenomena resulting from
sound-matter interactions in a fully tunable solid-state platform, in which an
array of solid-state spins in diamond are coupled to quantized acoustic waves
in a one-dimensional (1D) optomechanical crystal. We find that, by a spatially
varying laser drive that introduces a position-dependent phase in the
optomechanical interaction, the mechanical band structure can be tuned in situ,
consequently leading to unconventional quantum sound-matter interactions. We
show that quasi-chiral sound-matter interactions can occur, with tunable ranges
from bidirectional to quasi-unidirectional, when the spins are resonant with
the bands. When the solid-state spins'frequency lies within the acoustic
band-gap, we demonstrate the emergence of an exotic polariton bound state,
which can mediate long-range tunable, odd-neighbor and complex spin-spin
interactions. This work expands the present exploration of quantum phononics
and can have wide applications in quantum simulation and quantum information
processing.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum walks and correlated dynamics in an interacting synthetic Rydberg lattice [5.855209052942117]
Coherent dynamics of interacting quantum particles plays a central role in the study of strongly correlated quantum matter.
We present a synthetic landscape on which to control and observe coherent and correlated dynamics.
This work establishes synthetic Rydberg lattices of interacting atom arrays as a promising platform for programmable quantum many-body dynamics.
arXiv Detail & Related papers (2024-03-31T16:56:51Z) - Quantum-induced Stochastic Optomechanical Dynamics [0.0]
Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization.
For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments.
arXiv Detail & Related papers (2024-01-29T19:30:21Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Interaction-induced topological pumping in a solid-state quantum system [18.7657779101508]
Inter-particle interaction can profoundly alter the band structure of quantum many-body systems.
Here we demonstrate interaction-induced topological pumping in a solid-state quantum system comprising an array of 36 superconducting qubits.
arXiv Detail & Related papers (2023-03-08T13:57:13Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Acoustically induced coherent spin trapping [0.0]
Hybrid spin-optomechanical quantum systems offer high flexibility, integrability and applicability for quantum science and technology.
On-chip surface acoustic waves (SAWs) can efficiently drive spin transitions in the ground states (GSs) of atomic-scale, color centre qubits.
We show that strain-induced spin interactions within their optically excited state (ES) can exceed by two orders of magnitude the ones within the GS.
arXiv Detail & Related papers (2021-04-07T09:32:02Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.