論文の概要: Uppsala NLP at SemEval-2021 Task 2: Multilingual Language Models for
Fine-tuning and Feature Extraction in Word-in-Context Disambiguation
- arxiv url: http://arxiv.org/abs/2104.03767v2
- Date: Fri, 9 Apr 2021 04:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 13:14:40.068972
- Title: Uppsala NLP at SemEval-2021 Task 2: Multilingual Language Models for
Fine-tuning and Feature Extraction in Word-in-Context Disambiguation
- Title(参考訳): uppsala nlp at semeval-2021 task 2: word-in-context disambiguationにおける微調整と特徴抽出のための多言語モデル
- Authors: Huiling You, Xingran Zhu and Sara Stymne
- Abstract要約: XLM-RoBERTa(XLMR)、Multilingual BERT(mBERT)、Multilingual distilled BERT(mDistilBERT)の3つの事前学習言語モデルの有用性について検討する。
これら3つのモデルを微調整と特徴抽出の2つの設定で比較した。
微調整は特徴抽出よりも優れていることがわかります。
- 参考スコア(独自算出の注目度): 1.1648129262452114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe the Uppsala NLP submission to SemEval-2021 Task 2 on multilingual
and cross-lingual word-in-context disambiguation. We explore the usefulness of
three pre-trained multilingual language models, XLM-RoBERTa (XLMR),
Multilingual BERT (mBERT) and multilingual distilled BERT (mDistilBERT). We
compare these three models in two setups, fine-tuning and as feature
extractors. In the second case we also experiment with using dependency-based
information. We find that fine-tuning is better than feature extraction. XLMR
performs better than mBERT in the cross-lingual setting both with fine-tuning
and feature extraction, whereas these two models give a similar performance in
the multilingual setting. mDistilBERT performs poorly with fine-tuning but
gives similar results to the other models when used as a feature extractor. We
submitted our two best systems, fine-tuned with XLMR and mBERT.
- Abstract(参考訳): 本論文では,多言語・多言語・言語間の単語間曖昧化に関するSemEval-2021タスク2へのUppsala NLPの提出について述べる。
XLM-RoBERTa(XLMR)、Multilingual BERT(mBERT)、Multilingual distilled BERT(mDistilBERT)の3つの事前学習言語モデルの有用性を検討した。
これら3つのモデルを微調整と特徴抽出の2つの設定で比較した。
2つ目のケースでは、依存性ベースの情報を使う実験も行います。
微調整は特徴抽出よりも優れている。
XLMRは細調整と特徴抽出の両方でmBERTよりも優れているが、これらの2つのモデルは多言語設定で同様の性能を示す。
mDistilBERTは微調整では性能が良くないが、特徴抽出器として使用する場合、他のモデルと同様の結果が得られる。
我々はXLMRとmBERTで微調整した2つの最良のシステムを提出した。
関連論文リスト
- PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Cross-Lingual Knowledge Distillation for Answer Sentence Selection in
Low-Resource Languages [90.41827664700847]
低リソース言語のためのAS2モデルの学習方法として、英語の強力なAS2教師からCLKD(Cross-Lingual Knowledge Distillation)を提案する。
提案手法を評価するために,1)Xtr-WikiQA,(9言語用ウィキQAデータセット,2)TyDi-AS2,8言語にまたがる70万以上の質問を持つ多言語AS2データセットを紹介する。
論文 参考訳(メタデータ) (2023-05-25T17:56:04Z) - MicroBERT: Effective Training of Low-resource Monolingual BERTs through
Parameter Reduction and Multitask Learning [12.640283469603357]
トランスフォーマー言語モデル(TLM)は、ほとんどのNLPタスクには必須であるが、必要な事前学習データが多いため、低リソース言語では作成が困難である。
本研究では,低リソース環境下でモノリンガルなTLMを訓練する2つの手法について検討する。
7つの多様な言語から得られた結果から,私たちのモデルであるMicroBERTは,典型的なモノリンガルなTLM事前学習手法と比較して,下流タスク評価において顕著な改善を達成できたことが示唆された。
論文 参考訳(メタデータ) (2022-12-23T18:18:20Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - Learning Compact Metrics for MT [21.408684470261342]
最先端多言語モデルであるRemBERTを用いて,多言語性とモデルキャパシティのトレードオフについて検討する。
モデルのサイズが実際に言語間移動のボトルネックであることを示し、蒸留がこのボトルネックにどのように対処できるかを示す。
提案手法は,バニラ微調整よりも最大10.5%向上し,パラメータの3分の1しか使用せず,RemBERTの性能の92.6%に達する。
論文 参考訳(メタデータ) (2021-10-12T20:39:35Z) - It's not Greek to mBERT: Inducing Word-Level Translations from
Multilingual BERT [54.84185432755821]
mBERT (multilingual BERT) は、言語間での移動を可能にするリッチな言語間表現を学習する。
我々はmBERTに埋め込まれた単語レベルの翻訳情報について検討し、微調整なしで優れた翻訳能力を示す2つの簡単な方法を提案する。
論文 参考訳(メタデータ) (2020-10-16T09:49:32Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z) - lamBERT: Language and Action Learning Using Multimodal BERT [0.1942428068361014]
本研究では,マルチモーダルBERT(lamBERT)モデルを用いた言語と行動学習を提案する。
実験は、エージェントが適切に振る舞うために言語理解を必要とするグリッド環境で行われる。
lamBERTモデルは、他のモデルと比較してマルチタスク設定や転送設定において高い報酬を得た。
論文 参考訳(メタデータ) (2020-04-15T13:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。