論文の概要: Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics
- arxiv url: http://arxiv.org/abs/2104.04391v3
- Date: Mon, 4 Sep 2023 19:54:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 12:33:48.860530
- Title: Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics
- Title(参考訳): 流れに基づく時空間構造による運動ダイナミクスの予測
- Authors: Mohsen Zand, Ali Etemad, and Michael Greenspan
- Abstract要約: 条件付き流れ (CNF) は、高次元と相互相関を持つ複雑な分布を表現できるフレキシブルな生成モデルである。
本研究では,時間的入力特徴の出力を自己回帰的に正規化する新しい手法としてMotionFlowを提案する。
本稿では,予測,動き予測時系列予測,二分節分割などのタスクに本手法を適用した。
- 参考スコア(独自算出の注目度): 21.24885597341643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional Normalizing Flows (CNFs) are flexible generative models capable
of representing complicated distributions with high dimensionality and large
interdimensional correlations, making them appealing for structured output
learning. Their effectiveness in modelling multivariates spatio-temporal
structured data has yet to be completely investigated. We propose MotionFlow as
a novel normalizing flows approach that autoregressively conditions the output
distributions on the spatio-temporal input features. It combines deterministic
and stochastic representations with CNFs to create a probabilistic neural
generative approach that can model the variability seen in high dimensional
structured spatio-temporal data. We specifically propose to use conditional
priors to factorize the latent space for the time dependent modeling. We also
exploit the use of masked convolutions as autoregressive conditionals in CNFs.
As a result, our method is able to define arbitrarily expressive output
probability distributions under temporal dynamics in multivariate prediction
tasks. We apply our method to different tasks, including trajectory prediction,
motion prediction, time series forecasting, and binary segmentation, and
demonstrate that our model is able to leverage normalizing flows to learn
complicated time dependent conditional distributions.
- Abstract(参考訳): 条件付き正規化フロー (CNF) は、高次元と高次元の相関関係を持つ複雑な分布を表現できる柔軟な生成モデルであり、構造化された出力学習にアピールする。
多変量時空間構造データのモデル化におけるそれらの効果は、まだ完全には研究されていない。
本研究では,時空間入力の出力分布を自己回帰的に予測する新しい正規化フロー手法としてMotionFlowを提案する。
決定論的および確率的表現をcnfsと組み合わせ、高次元構造化時空間データに見られる変動性をモデル化する確率的ニューラルネットワーク生成アプローチを作成する。
具体的には、時間依存モデリングの潜在空間を分解するために条件付き述語を用いることを提案する。
また,CNFにおける自己回帰条件としてマスク付き畳み込みを用いた。
その結果,多変量予測タスクにおいて,任意に表現可能な出力確率分布を時間動的に定義できる。
提案手法は,軌道予測,運動予測,時系列予測,二分節分割など,様々なタスクに適用し,正規化フローを利用して複雑な時間依存条件分布を学習できることを実証する。
関連論文リスト
- Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
リカレントニューラルネットワークやトランスフォーマーのような逐次モデルは、確率的時系列予測の標準となっている。
近年の研究では、拡散モデルやフローベースモデルを用いて、時系列計算や予測に拡張した生成的アプローチについて検討している。
本研究は、補間剤と制御機能付き条件生成に基づく、リカレントニューラルネットワークの効率と拡散モデルの確率的モデリングを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T03:52:48Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes [18.344934424278048]
生成モデルに基づく動的システムの確率的予測のためのフレームワークを提案する。
このSDEのドリフトと拡散係数は訓練後に調整できることを示し、推定誤差の影響を最小限に抑える特定の選択がF"ollmerプロセスを与えることを示した。
論文 参考訳(メタデータ) (2024-03-20T16:33:06Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
本稿では,ODEベクトル場を再パラメータ化するために正規化フローを導入し,データ駆動の事前分布を導出する。
また, GP ODE の後部推定に正規化フローを適用し, 強平均場仮定の問題を解く。
シミュレーション力学系と実世界の人間の動作データに対するアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-17T09:28:47Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
本稿では,高次元時系列に対する新しいスパース無限次VARモデルを提案する。
このモデルによって得られたVARMA型力学の時間的・横断的な構造は別々に解釈できる。
統計的効率と解釈可能性の向上は、時間的情報をほとんど失わずに達成できる。
論文 参考訳(メタデータ) (2022-09-02T17:14:24Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
ウィナー過程の微分変形によって駆動される新しいタイプの流れを提案する。
その結果,観測可能なプロセスが基本プロセスの魅力的な特性の多くを継承するリッチ時系列モデルが得られた。
論文 参考訳(メタデータ) (2020-02-24T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。