論文の概要: Understanding Event-Generation Networks via Uncertainties
- arxiv url: http://arxiv.org/abs/2104.04543v2
- Date: Fri, 1 Oct 2021 09:09:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 07:23:37.536650
- Title: Understanding Event-Generation Networks via Uncertainties
- Title(参考訳): 不確実性によるイベント生成ネットワークの理解
- Authors: Marco Bellagente, Manuel Hau{\ss}mann, Michel Luchmann, and Tilman
Plehn
- Abstract要約: フローの正規化や非可逆性ネットワークがトレーニングから不確実性を捕捉し、イベント重みに関する不確実性に変換する方法を示す。
基本的に、密度と不確実性の推定との相互作用は、これらのネットワークが双対事象数ではなくパラメータに適合する関数を学習していることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the growing success of generative neural networks in LHC
simulations, the crucial question is how to control the networks and assign
uncertainties to their event output. We show how Bayesian normalizing flow or
invertible networks capture uncertainties from the training and turn them into
an uncertainty on the event weight. Fundamentally, the interplay between
density and uncertainty estimates indicates that these networks learn functions
in analogy to parameter fits rather than binned event counts.
- Abstract(参考訳): LHCシミュレーションにおける生成ニューラルネットワークの成功に続いて、重要な疑問は、どのようにネットワークを制御し、イベント出力に不確実性を割り当てるかである。
ベイズ正規化フローや非可逆ネットワークがトレーニングから不確実性を捕捉し、イベント重みに関する不確実性に変換する方法を示す。
基本的に、密度と不確実性の推定の間の相互作用は、これらのネットワークがバイナリ化されたイベントカウントではなくパラメータフィットに類似した関数を学習することを示している。
関連論文リスト
- Extracting Usable Predictions from Quantized Networks through
Uncertainty Quantification for OOD Detection [0.0]
OOD検出は、ネットワーク設計の進歩とタスクの複雑さの増大により、より重要になっている。
本稿では、事前学習された視覚モデルから予測の不確かさを定量化する不確実性定量化(UQ)手法を提案する。
我々の手法は、無視されたサンプルの80%が誤分類されるのを防いでいることを観察する。
論文 参考訳(メタデータ) (2024-03-02T03:03:29Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Certified Invertibility in Neural Networks via Mixed-Integer Programming [16.64960701212292]
ニューラルネットワークは敵の攻撃に弱いことが知られている。
ネットワークの決定に影響を与えない大きな、意味のある摂動が存在するかもしれない。
ニューラルネットワーク間の変換における可逆性検証に,我々の知見がどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-27T15:40:38Z) - An out-of-distribution discriminator based on Bayesian neural network
epistemic uncertainty [0.19573380763700712]
ベイズニューラルネットワーク(Bayesian Neural Network, BNN)は、不確実性を定量化するための組み込み能力を備えた、重要なタイプのニューラルネットワークである。
本稿では,BNNにおける失語症およびてんかんの不確実性とその計算方法について論じる。
論文 参考訳(メタデータ) (2022-10-18T21:15:33Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Bayesian Convolutional Neural Networks for Limited Data Hyperspectral
Remote Sensing Image Classification [14.464344312441582]
我々は、HSRS画像の分類に、ベイズニューラルネットワークと呼ばれる、ディープニューラルネットワークの特別なクラスを使用します。
ベイズニューラルネットワークは、不確実性を測定するための固有のツールを提供する。
ベイジアンネットワークは、同様に構築された非ベイジアン畳み込みニューラルネットワーク(CNN)と、既成のランダムフォレスト(RF)より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T00:02:16Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z) - Learnable Uncertainty under Laplace Approximations [65.24701908364383]
我々は、予測そのものに分離された方法で不確実性を明示的に「訓練」するために形式主義を発展させる。
これらのユニットは不確実性を認識した目標によってトレーニング可能であり、標準的なラプラス近似の性能を向上させることができる。
論文 参考訳(メタデータ) (2020-10-06T13:43:33Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
ディープラーニングにおける不確実性を推定する既存の方法は、複数の前方パスを必要とする傾向がある。
フィードフォワードネットワークのシーケンシャルな構造を利用することで、トレーニング目標を評価し、単一のフォワードパスで予測を行うことができる。
実世界の回帰と画像分類タスクに対する我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-06-15T14:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。