論文の概要: Extracting Usable Predictions from Quantized Networks through
Uncertainty Quantification for OOD Detection
- arxiv url: http://arxiv.org/abs/2403.01076v1
- Date: Sat, 2 Mar 2024 03:03:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 15:15:43.762353
- Title: Extracting Usable Predictions from Quantized Networks through
Uncertainty Quantification for OOD Detection
- Title(参考訳): OOD検出のための不確かさ定量化による量子化ネットワークからの有効予測抽出
- Authors: Rishi Singhal and Srinath Srinivasan
- Abstract要約: OOD検出は、ネットワーク設計の進歩とタスクの複雑さの増大により、より重要になっている。
本稿では、事前学習された視覚モデルから予測の不確かさを定量化する不確実性定量化(UQ)手法を提案する。
我々の手法は、無視されたサンプルの80%が誤分類されるのを防いでいることを観察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: OOD detection has become more pertinent with advances in network design and
increased task complexity. Identifying which parts of the data a given network
is misclassifying has become as valuable as the network's overall performance.
We can compress the model with quantization, but it suffers minor performance
loss. The loss of performance further necessitates the need to derive the
confidence estimate of the network's predictions. In line with this thinking,
we introduce an Uncertainty Quantification(UQ) technique to quantify the
uncertainty in the predictions from a pre-trained vision model. We subsequently
leverage this information to extract valuable predictions while ignoring the
non-confident predictions. We observe that our technique saves up to 80% of
ignored samples from being misclassified. The code for the same is available
here.
- Abstract(参考訳): OOD検出は、ネットワーク設計の進歩とタスクの複雑さの増加により、より重要になっている。
ネットワークのどの部分が誤って分類されているかを特定することは、ネットワーク全体のパフォーマンスと同じくらいの価値がある。
モデルを量子化で圧縮することはできますが、パフォーマンスの損失は少ないです。
性能の低下は、ネットワークの予測に対する信頼度推定を導出する必要性をさらに高める。
この考え方に沿って、事前学習された視覚モデルから予測の不確かさを定量化する不確実性定量化(UQ)手法を導入する。
この情報を利用して、信頼できない予測を無視しながら、貴重な予測を抽出する。
我々の手法は、無視されたサンプルの80%が誤分類されるのを防ぐ。
同じコードはここで入手できる。
関連論文リスト
- Estimating Uncertainty with Implicit Quantile Network [0.0]
不確かさの定量化は多くの性能クリティカルなアプリケーションにおいて重要な部分である。
本稿では,アンサンブル学習やベイズニューラルネットワークなど,既存のアプローチに対する簡単な代替手段を提供する。
論文 参考訳(メタデータ) (2024-08-26T13:33:14Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
汎用的でデプロイが容易なサンプリング不要のアプローチを導入します。
我々は,最先端手法と同等の信頼性のある不確実性推定を,計算コストを著しく低減した形で生成する。
論文 参考訳(メタデータ) (2022-11-21T13:23:09Z) - CNN-based Prediction of Network Robustness With Missing Edges [0.9239657838690227]
部分的なネットワーク情報が欠落している場合、CNNによる接続性および制御可能性予測の性能について検討する。
しきい値として、7.29%以上の情報が失われれば、CNNベースの予測の性能は著しく劣化する。
論文 参考訳(メタデータ) (2022-08-25T03:36:20Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
ディープニューラルネットワークは、データ内の隠れパターンを検出し、それらを活用して予測する強力なツールであるが、不確実性を理解するように設計されていない。
我々は予測力を犠牲にすることなく、より信頼性の高い不確実性推定を導出できる新しいトレーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-05-12T05:08:10Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
本研究では,現実の大規模データセットにおける信頼性の予測問題について検討する。
我々は、先行技術損失関数で訓練された信頼性予測器が、正しい予測と誤った予測の両方を信頼に値するものとみなす傾向があることを観察する。
そこで我々は,2つのスライド状の曲線による不正確な予測から,特徴w.r.t.正しい予測を分離する,新たな急勾配損失を提案する。
論文 参考訳(メタデータ) (2021-09-30T19:19:09Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。