論文の概要: Predicting the Accuracy of Early-est Earthquake Magnitude Estimates with
an LSTM Neural Network: A Preliminary Analysis
- arxiv url: http://arxiv.org/abs/2104.05712v1
- Date: Mon, 12 Apr 2021 10:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 05:11:16.085190
- Title: Predicting the Accuracy of Early-est Earthquake Magnitude Estimates with
an LSTM Neural Network: A Preliminary Analysis
- Title(参考訳): LSTMニューラルネットワークによる最初期の地震マグニチュード推定精度の推定:予備解析
- Authors: Massimo Nazaria
- Abstract要約: 本報告では,地震発生から1分後,アーリーストが算出したマグニチュード推定の精度を予測するため,LSTMニューラルネットワークの予備解析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report presents a preliminary analysis of an LSTM neural network
designed to predict the accuracy of magnitude estimates computed by Early-est
during the first minutes after an earthquake occurs.
- Abstract(参考訳): 本報告では,地震発生後1分間に早期推定値の精度を予測するためのLSTMニューラルネットワークの予備解析を行った。
関連論文リスト
- Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Sepsis Prediction with Temporal Convolutional Networks [6.161443205488337]
我々のモデルはMIMIC IIIデータベースから抽出したデータに基づいて訓練されている。
いくつかの機械学習モデルとベンチマークして、このバイナリ分類タスクでは、我々のモデルの方が優れている。
論文 参考訳(メタデータ) (2022-05-31T01:14:38Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Deep learning for laboratory earthquake prediction and autoregressive
forecasting of fault zone stress [3.6894467064214456]
実験室では、摩擦性スティックスリップ現象が地震と地震のサイクルに類似している。
近年の研究では, 断層帯の音響放射を用いて, 機械学習が地震のいくつかの側面を予測できることが示されている。
本研究では,室内地震予測と自己回帰予測のための深層学習(DL)手法を実証する。
論文 参考訳(メタデータ) (2022-03-24T19:38:32Z) - End-to-end LSTM based estimation of volcano event epicenter localization [55.60116686945561]
火山イベントの局所化問題に対処するために, エンドツーエンドのLSTMスキームを提案する。
LSTMは、時間変化の信号のダイナミクスを捉えることができるため、選択された。
その結果、LSTMベースのアーキテクチャは成功率、すなわち1.0Km未満のエラーが48.5%に等しいことを示した。
論文 参考訳(メタデータ) (2021-10-27T17:11:33Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
ディープラーニングを用いた高速重力波パラメータ推定のための前例のない精度を示す。
LIGO-Virgo Gravitational-Wave Transient Catalogから8つの重力波事象を解析した。
標準推論符号と非常に密接な定量的な一致を見いだすが、推定時間がO(day)から1イベントあたり1分に短縮される。
論文 参考訳(メタデータ) (2021-06-23T18:00:05Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-05-17T12:19:22Z) - Dynamical prediction of two meteorological factors using the deep neural
network and the long short term memory $(1)$ [0.0]
本研究では,既存のニューラルネットワーク法を用いて予測精度を向上させる。
シミュレーション研究は、人工ニューラルネットワーク(ANN)、ディープニューラルネットワーク(DNN)、エクストリームラーニングマシン(ELM)、ロング短期メモリ(LSTM)を適用することによって行われます。
2014年3月から2020年2月までの韓国10都市の低周波時系列からデータを抽出する。
論文 参考訳(メタデータ) (2021-01-16T16:24:24Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - A fast noise filtering algorithm for time series prediction using
recurrent neural networks [0.0]
本稿では,RNNの内部力学を考察し,そのような動作に必要な条件のセットを確立する。
そこで我々は,新しい近似アルゴリズムを提案し,精度を損なうことなく予測プロセスを著しく高速化することを示した。
論文 参考訳(メタデータ) (2020-07-16T01:32:48Z) - Recurrent neural networks and Koopman-based frameworks for temporal
predictions in a low-order model of turbulence [1.95992742032823]
本研究では,長期記憶ネットワークを適切に訓練したカオスシステムの長期統計の再現性に優れることを示す。
Koopmanベースのフレームワークは、非線形強制(KNF)を備えたKoopmanと呼ばれ、計算コストが大幅に低い統計において、同じレベルの正確性をもたらす。
論文 参考訳(メタデータ) (2020-05-01T11:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。