Driving quantum systems with repeated conditional measurements
- URL: http://arxiv.org/abs/2104.06232v1
- Date: Tue, 13 Apr 2021 14:21:55 GMT
- Title: Driving quantum systems with repeated conditional measurements
- Authors: Quancheng Liu, Klaus Ziegler, David A. Kessler, Eli Barkai
- Abstract summary: We investigate the effect of conditional null measurements on a quantum system and find a rich variety of behaviors.
We discuss four generic behaviors that emerge in these monitored systems.
When the control parameters are tuned, such that the eigenvalues of the survival operator all coalesce to zero, one has exceptional points that corresponds to situations that violate the null measurement condition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the effect of conditional null measurements on a quantum
system and find a rich variety of behaviors. Specifically, quantum dynamics
with a time independent $H$ in a finite dimensional Hilbert space are
considered with repeated strong null measurements of a specified state. We
discuss four generic behaviors that emerge in these monitored systems. The
first arises in systems without symmetry, along with their associated
degeneracies in the energy spectrum, and hence in the absence of dark states as
well. In this case, a unique final state can be found which is determined by
the largest eigenvalue of the survival operator, the non-unitary operator
encoding both the unitary evolution between measurements and the measurement
itself. For a three-level system, this is similar to the well known shelving
effect. Secondly, for systems with built-in symmetry and correspondingly a
degenerate energy spectrum, the null measurements dynamically select the
degenerate energy levels, while the non-degenerate levels are effectively wiped
out. Thirdly, in the absence of dark states, and for specific choices of
parameters, two or more eigenvalues of the survival operator match in
magnitude, and this leads to an oscillatory behavior controlled by the
measurement rate and not solely by the energy levels. Finally, when the control
parameters are tuned, such that the eigenvalues of the survival operator all
coalesce to zero, one has exceptional points that corresponds to situations
that violate the null measurement condition, making the conditional measurement
process impossible.
Related papers
- Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - Natural disorder distributions from measurement [0.0]
We consider scenarios where the dynamics of a quantum system are partially determined by prior local measurements of some interacting environmental degrees of freedom.
We derive the properties of distributions for both quadrature and photon number measurements.
Given a notion of naturally occurring measurement, this suggests a new class of scenarios for the dynamics of quantum systems in particle physics and cosmology.
arXiv Detail & Related papers (2024-05-03T16:20:14Z) - Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry [77.34726150561087]
Quantum systems with dynamical symmetries have conserved quantities which are preserved under coherent controls.
Incoherent control can increase the maximal attainable transition probability.
We show that all critical points are global maxima, global minima, saddle points and second order traps.
arXiv Detail & Related papers (2023-07-14T16:12:21Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Daemonic ergotropy in continuously-monitored open quantum batteries [0.0]
daemonic ergotropy is introduced to properly describe and quantify this work extraction enhancement in the quantum regime.
We show that the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the corresponding unconditional state.
The upper bound is achieved by assuming an initial pure state and a perfectly efficient projective measurement on the environment.
arXiv Detail & Related papers (2023-02-23T19:04:47Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Experimental limit on non-linear state-dependent terms in quantum theory [110.83289076967895]
We implement blinded measurement and data analysis with three control bit strings.
Control of systematic effects is realized by producing one of the control bit strings with a classical random-bit generator.
Our measurements find no evidence for electromagnetic quantum state-dependent non-linearity.
arXiv Detail & Related papers (2022-04-25T18:00:03Z) - Relating measurement disturbance, information and orthogonality [0.38073142980732994]
In the general theory of quantum measurement, one associates a positive semidefinite operator on a $d$-dimensional Hilbert space to each of the $n$ possible outcomes of an arbitrary measurement.
This restriction allows us to more precisely state the quantum adage: information gain of a system is always accompanied by unavoidable disturbance.
We identify symmetric informationally complete quantum measurements as the unique quantum analogs of a perfectly informative and nondisturbing classical ideal measurement.
arXiv Detail & Related papers (2021-05-05T14:19:40Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.