論文の概要: Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model
- arxiv url: http://arxiv.org/abs/2104.06259v1
- Date: Tue, 6 Apr 2021 11:09:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 19:39:57.997097
- Title: Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model
- Title(参考訳): LSTMに基づくディープラーニングモデルを用いた株式投資の収益性分析
- Authors: Jaydip Sen, Abhishek Dutta, Sidra Mehtab
- Abstract要約: 長期記憶ネットワーク(LSTM)ネットワーク上に構築した深層学習に基づく回帰モデルを提案する。
特定の開始日と終了日について、株式のティッカー名に基づいて過去の株価を抽出し、将来の株価を予測する。
インド株式市場の15の重要セクターから選ばれた75の重要銘柄にモデルを配置する。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing robust systems for precise prediction of future prices of stocks
has always been considered a very challenging research problem. Even more
challenging is to build a system for constructing an optimum portfolio of
stocks based on the forecasted future stock prices. We present a deep
learning-based regression model built on a long-and-short-term memory network
(LSTM) network that automatically scraps the web and extracts historical stock
prices based on a stock's ticker name for a specified pair of start and end
dates, and forecasts the future stock prices. We deploy the model on 75
significant stocks chosen from 15 critical sectors of the Indian stock market.
For each of the stocks, the model is evaluated for its forecast accuracy.
Moreover, the predicted values of the stock prices are used as the basis for
investment decisions, and the returns on the investments are computed.
Extensive results are presented on the performance of the model. The analysis
of the results demonstrates the efficacy and effectiveness of the system and
enables us to compare the profitability of the sectors from the point of view
of the investors in the stock market.
- Abstract(参考訳): 将来の株価を正確に予測するための堅牢なシステムを設計することは、常に非常に困難な研究課題とみなされてきた。
さらに難しいのは、予測された将来の株価に基づいて最適な株式ポートフォリオを構築するシステムを構築することだ。
本稿では,長期記憶ネットワーク(lstm,long-and-short-term memory network)ネットワーク上に構築した深層学習に基づく回帰モデルを提案する。
インド株式市場の15の重要セクターから選ばれた75の重要銘柄にモデルを配置する。
各株について、モデルが予測精度で評価される。
さらに、投資決定の基礎として株価の予測値を使用し、投資に対するリターンを算出する。
モデルの性能に関する詳細な結果が得られた。
分析の結果, システムの有効性と有効性を示し, 株式市場の投資家の視点から, セクターの収益性を比較することが可能となった。
関連論文リスト
- Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - HiSA-SMFM: Historical and Sentiment Analysis based Stock Market
Forecasting Model [3.6704226968275258]
本研究の目的は、企業の金融株の将来を精度良く予測することである。
感情分析の分野での既存の研究を分析した結果、株価の動きとニュース記事の発行との間には強い相関関係があることが判明した。
論文 参考訳(メタデータ) (2022-03-10T17:03:38Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(RF)、適応型ニューラルファジィ推論システム(ANFIS)の3つの機械学習アルゴリズムについて検討する。
RFモデルは最高の予測結果を達成し,FNNとANFISのテスト性能を向上させることができる。
この結果から, 機械学習モデルは, 株式投資に関する意思決定において, 基礎アナリストの助けとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-26T18:48:51Z) - Analysis of Sectoral Profitability of the Indian Stock Market Using an
LSTM Regression Model [0.0]
本稿では,所定時間間隔でウェブから過去の株価を自動的に抽出する,長期記憶(LSTM)アーキテクチャに基づく最適化された予測モデルを提案する。
このモデルは、インド国立証券取引所(NSE)に上場している7つのセクターから70の重要株式の予測結果に基づいて、取引の売買のために展開されている。
結果は、このモデルが将来の株価を予測する上で非常に正確であることを示唆している。
論文 参考訳(メタデータ) (2021-11-09T07:50:48Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
近年,Webから抽出したストック概念を用いて共有情報をマイニングし,予測結果を改善する手法が提案されている。
これまでの研究では、ストックとコンセプトのつながりは定常的であり、ストックとコンセプトのダイナミックな関連性を無視していた。
本稿では,事前定義された概念と隠れた概念から,概念指向の共有情報を適切にマイニングできる新しいストックトレンド予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-26T14:04:04Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
株価と株価の動きの堅牢かつ正確な予測のための予測モデルを構築することは、解決すべき課題である。
本章では、インド国立証券取引所(NSE)の多角化部門に上場する株式の将来価格の堅牢かつ正確な予測のために、ディープラーニングアーキテクチャ上に構築された予測回帰モデル集を提案する。
論文 参考訳(メタデータ) (2021-06-17T17:15:02Z) - A comparative study of Different Machine Learning Regressors For Stock
Market Prediction [2.1485350418225244]
我々はNASDAQの株式市場を集中的に研究し、10社のポートフォリオを選択することを目標とした。
目標は、履歴データを用いて翌日の株式の公開価格を計算することである。
このタスクを達成するために、9つの異なる機械学習レグレッサーがこのデータに適用され、パフォーマンスメトリックとしてMSEとR2を使用して評価されます。
論文 参考訳(メタデータ) (2021-04-14T15:37:33Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。