論文の概要: Considerations Across Three Cultures: Parametric Regressions,
Interpretable Algorithms, and Complex Algorithms
- arxiv url: http://arxiv.org/abs/2104.06571v1
- Date: Wed, 14 Apr 2021 01:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 13:08:54.026118
- Title: Considerations Across Three Cultures: Parametric Regressions,
Interpretable Algorithms, and Complex Algorithms
- Title(参考訳): 3つの文化:パラメトリック回帰、解釈可能なアルゴリズム、複雑なアルゴリズム
- Authors: Ani Eloyan and Sherri Rose
- Abstract要約: Leo Breiman氏の論文の拡張を"統計モデル:2つの文化"から考える
パラメトリック回帰、解釈可能なアルゴリズム、および複雑な(おそらく説明可能な)アルゴリズムに焦点を当てる。
- 参考スコア(独自算出の注目度): 0.18275108630751835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider an extension of Leo Breiman's thesis from "Statistical Modeling:
The Two Cultures" to include a bifurcation of algorithmic modeling, focusing on
parametric regressions, interpretable algorithms, and complex (possibly
explainable) algorithms.
- Abstract(参考訳): レオ・ブレイマンの論文を「統計モデリング:2つの文化」から拡張し、パラメトリック回帰、解釈可能なアルゴリズム、複雑な(多分説明可能な)アルゴリズムに焦点を当てたアルゴリズムモデリングの分岐を含める。
関連論文リスト
- Memetic collaborative approaches for finding balanced incomplete block designs [0.0]
平衡不完全ブロック設計(BIBD)問題は、多数の対称性を持つ難しい問題である。
本稿では,古典的二元数定式化の代替として機能する双対(整数)問題表現を提案する。
論文 参考訳(メタデータ) (2024-11-04T16:41:18Z) - Unlock the Power of Algorithm Features: A Generalization Analysis for Algorithm Selection [25.29451529910051]
本稿では,アルゴリズムの特徴に基づくアルゴリズム選択の証明可能な最初の保証を提案する。
アルゴリズムの特徴に関連する利点とコストを分析し、一般化誤差が様々な要因にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2024-05-18T17:38:25Z) - Analysis of Off-Policy Multi-Step TD-Learning with Linear Function Approximation [5.152147416671501]
本稿では,線形関数近似,オフポリシー学習,ブートストラッピングを特徴とする多段階TD学習アルゴリズムを解析する。
2つのnステップのTD学習アルゴリズムが提案され分析され、このアルゴリズムは勾配と制御理論のモデルなし強化学習とみなすことができる。
論文 参考訳(メタデータ) (2024-02-24T10:42:50Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Classical and Quantum Iterative Optimization Algorithms Based on Matrix
Legendre-Bregman Projections [1.5736899098702972]
エルミート行列空間上で定義されたルジャンドル・ブレーグマン射影について考察し,それに基づいて反復最適化アルゴリズムを設計する。
本稿では,ブレグマン射影アルゴリズムと近似的ブラグマン射影アルゴリズムについて検討する。
特に、近似反復アルゴリズムは、最大エントロピー推論のための一般化反復スケーリング(GIS)アルゴリズムの非可換バージョンをもたらす。
論文 参考訳(メタデータ) (2022-09-28T15:59:08Z) - Geometry of EM and related iterative algorithms [8.228889210180268]
期待-最大化(EM)アルゴリズムは、統計的推論の方法論として長年使われてきた単純なメタアルゴリズムである。
本稿では,EMアルゴリズムの情報幾何学的定式化である$em$アルゴリズムとその拡張と様々な問題への応用について紹介する。
論文 参考訳(メタデータ) (2022-09-03T00:23:23Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Learning Mixtures of Low-Rank Models [89.39877968115833]
低ランクモデルの計算混合を学習する問題について検討する。
ほぼ最適サンプルを用いて未知の行列を復元することが保証されるアルゴリズムを開発する。
さらに,提案アルゴリズムはランダムノイズに対して確実に安定である。
論文 参考訳(メタデータ) (2020-09-23T17:53:48Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
情報理論の概念,すなわち相互情報と情報のボトルネックを用いてメタ学習を定式化する。
相互情報に対する変分近似を用いることで、メタ学習のための汎用的かつトラクタブルな枠組みを導出する。
論文 参考訳(メタデータ) (2020-09-07T16:47:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。