論文の概要: Root-finding Approaches for Computing Conformal Prediction Set
- arxiv url: http://arxiv.org/abs/2104.06648v1
- Date: Wed, 14 Apr 2021 06:41:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 21:52:27.277814
- Title: Root-finding Approaches for Computing Conformal Prediction Set
- Title(参考訳): 計算等角予測集合に対するルートフィンディング手法
- Authors: Eugene Ndiaye and Ichiro Takeuchi
- Abstract要約: 共形予測は、以前の同一分布および交換可能な観測に基づいて、特徴ベクトルの未観測応答に対する信頼領域を構築する。
我々は,共形予測集合が古典的ルートフィンディングソフトウェアによって効率的に近似できる区間であるという事実を活用する。
- 参考スコア(独自算出の注目度): 18.405645120971496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction constructs a confidence region for an unobserved
response of a feature vector based on previous identically distributed and
exchangeable observations of responses and features. It has a coverage
guarantee at any nominal level without additional assumptions on their
distribution. However, it requires a refitting procedure for all replacement
candidates of the target response. In regression settings, this corresponds to
an infinite number of model fit. Apart from relatively simple estimators that
can be written as pieces of linear function of the response, efficiently
computing such sets is difficult and is still considered as an open problem. We
exploit the fact that, \emph{often}, conformal prediction sets are intervals
whose boundaries can be efficiently approximated by classical root-finding
software. We investigate how this approach can overcome many limitations of
formerly used strategies and achieves calculations that have been unattainable
so far. We discuss its complexity as well as its drawbacks and evaluate its
efficiency through numerical experiments.
- Abstract(参考訳): 共形予測は、応答と特徴の同じ分布と交換可能な観測に基づいて、特徴ベクトルの観測できない応答に対する信頼領域を構成する。
それは、その分布について追加の仮定なしに、いかなる名目レベルでも保証される。
しかし、ターゲット応答の全ての置換候補に対して、修正手続きが必要である。
回帰設定では、これは無限数のモデル適合に対応する。
反応の線型関数として記述できる比較的単純な推定器とは別に、そのような集合の効率的な計算は困難であり、依然として開問題とみなされている。
共形予測集合 \emph{often} は、古典的なルート探索ソフトウェアによって効率的に境界を近似できる区間である。
提案手法は,これまで使用されてきた戦略の多くの制約を克服し,これまで実現不可能であった計算を実現する。
その複雑さとその欠点について考察し,数値実験によりその効率を評価する。
関連論文リスト
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確に,分布自由で,漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
構築された信頼領域は強い整合性、すなわち、任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
論文 参考訳(メタデータ) (2023-08-03T15:52:27Z) - Conformal prediction set for time-series [16.38369532102931]
不確かさの定量化は複雑な機械学習手法の研究に不可欠である。
我々は,時系列の予測セットを構築するために,ERAPS(Ensemble Regularized Adaptive Prediction Set)を開発した。
ERAPSによる有意な限界被覆と条件被覆を示し、競合する手法よりも予測セットが小さい傾向にある。
論文 参考訳(メタデータ) (2022-06-15T23:48:53Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Conformal Prediction Sets with Limited False Positives [43.596058175459746]
提案手法は,有界な解数を持つ予測候補の正確なセットを出力することを目的として,多ラベル共形予測の新しい手法を開発する。
本稿では、自然言語処理、コンピュータビジョン、計算化学における様々な分類タスクにおけるこのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-15T18:52:33Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Efficient Conformal Prediction via Cascaded Inference with Expanded
Admission [43.596058175459746]
共形予測(CP)のための新しい手法を提案する。
我々は、単一の予測の代わりに、予測候補のセットを特定することを目指している。
この集合は、高い確率で正しい答えを含むことが保証される。
論文 参考訳(メタデータ) (2020-07-06T23:13:07Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。