Super-Heisenberg scaling in Hamiltonian parameter estimation in the
long-range Kitaev chain
- URL: http://arxiv.org/abs/2104.07120v2
- Date: Mon, 1 Nov 2021 10:07:06 GMT
- Title: Super-Heisenberg scaling in Hamiltonian parameter estimation in the
long-range Kitaev chain
- Authors: Jing Yang, Shengshi Pang, Adolfo del Campo and Andrew N. Jordan
- Abstract summary: We consider the estimation of the interaction strength in linear systems with long-range interactions.
We show that quantum control can improve the prefactor of the quantum Fisher information.
- Score: 2.3058787297835686
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In quantum metrology, nonlinear many-body interactions can enhance the
precision of Hamiltonian parameter estimation to surpass the Heisenberg
scaling. Here, we consider the estimation of the interaction strength in linear
systems with long-range interactions and using the Kitaev chains as a case
study, we establish a transition from the Heisenberg to super-Heisenberg
scaling in the quantum Fisher information by varying the interaction range. We
further show that quantum control can improve the prefactor of the quantum
Fisher information. Our results explore the advantage of optimal quantum
control and long-range interactions in many-body quantum metrology.
Related papers
- Achieving Heisenberg scaling by probe-ancilla interaction in quantum metrology [0.0]
Heisenberg scaling is an ultimate precision limit of parameter estimation allowed by the principles of quantum mechanics.
We show that interactions between the probes and an ancillary system may also increase the precision of parameter estimation to surpass the standard quantum limit.
Our protocol features in two aspects: (i) the Heisenberg scaling can be achieved by a product state of the probes, (ii) mere local measurement on the ancilla is sufficient.
arXiv Detail & Related papers (2024-07-23T23:11:50Z) - Quantum Enhanced Sensitivity through Many-Body Bloch Oscillations [0.0]
We study the sensing capacity of non-equilibrium dynamics in quantum systems exhibiting Bloch oscillations.
Our results provide a quantitative ansatz for quantum Fisher information in terms of time, probe size, and the number of excitations.
arXiv Detail & Related papers (2024-06-20T01:37:18Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Adversarial Hamiltonian learning of quantum dots in a minimal Kitaev
chain [0.0]
We show an adversarial machine learning algorithm to determine the parameters of a quantum dot-based Kitaev chain.
We use the model to predict the parameters at which Majorana bound states are predicted to appear.
Our results yield a strategy to support Kitaev chain tuning that is scalable to longer chains.
arXiv Detail & Related papers (2023-04-21T09:55:05Z) - Dynamic quantum-enhanced sensing without entanglement in central spin
systems [1.9888283697653608]
We propose a quantum many-spin system composed of a central spin interacting with many surrounding spins.
We find that the Heisenberg scaling can be reached while the probe state only needs to be a product state.
Our result indicates that the dynamic quantum-enhanced sensing scheme seems feasible in realistic quantum central spin systems.
arXiv Detail & Related papers (2022-04-30T15:24:21Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.