論文の概要: EXTRACTOR: Extracting Attack Behavior from Threat Reports
- arxiv url: http://arxiv.org/abs/2104.08618v1
- Date: Sat, 17 Apr 2021 18:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 13:40:30.696759
- Title: EXTRACTOR: Extracting Attack Behavior from Threat Reports
- Title(参考訳): ExTRACTOR:脅威レポートからの攻撃行動の抽出
- Authors: Kiavash Satvat, Rigel Gjomemo and V.N. Venkatakrishnan
- Abstract要約: 本稿では,ctiレポートから簡潔な攻撃行動を自動的に抽出するプロヴァンサと呼ばれる新しい手法とツールを提案する。
provenanceORはテキストに対して強い仮定をしておらず、非構造化テキストから攻撃行動をグラフとして抽出することができる。
この評価結果から,CTIレポートから簡潔なグラフを抽出し,サイバー分析ツールで脅威ハンティングに活用できることが示された。
- 参考スコア(独自算出の注目度): 6.471387545969443
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The knowledge on attacks contained in Cyber Threat Intelligence (CTI) reports
is very important to effectively identify and quickly respond to cyber threats.
However, this knowledge is often embedded in large amounts of text, and
therefore difficult to use effectively. To address this challenge, we propose a
novel approach and tool called EXTRACTOR that allows precise automatic
extraction of concise attack behaviors from CTI reports. EXTRACTOR makes no
strong assumptions about the text and is capable of extracting attack behaviors
as provenance graphs from unstructured text. We evaluate EXTRACTOR using
real-world incident reports from various sources as well as reports of DARPA
adversarial engagements that involve several attack campaigns on various OS
platforms of Windows, Linux, and FreeBSD. Our evaluation results show that
EXTRACTOR can extract concise provenance graphs from CTI reports and show that
these graphs can successfully be used by cyber-analytics tools in
threat-hunting.
- Abstract(参考訳): サイバー脅威インテリジェンス(CTI)レポートに含まれる攻撃に関する知識は、サイバー脅威を効果的に識別し、迅速に対応するために非常に重要である。
しかし、この知識はしばしば大量のテキストに埋め込まれており、効果的に利用することは困難である。
この課題に対処するために,CTIレポートから簡潔な攻撃行動の正確な抽出を可能にするEXTRACTORという新しい手法とツールを提案する。
EXTRACTORはテキストについて強い仮定をせず、構造化されていないテキストから前兆グラフとして攻撃行動を抽出することができる。
我々は、様々なソースからの実際のインシデントレポートと、Windows、Linux、FreeBSDの様々なOSプラットフォームに対するいくつかのアタックキャンペーンを含むDARPA敵のエンゲージメントのレポートを用いて、EXTRACTORを評価した。
評価の結果,EXTRACTORはCTIレポートから簡潔な前駆グラフを抽出し,サイバー分析ツールによる脅威追跡に有効であることが示された。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports [3.6785107661544805]
我々は、新しいCC-BY-SAライセンスのサイバー脅威レポートであるAnnoCTRを提示する。
レポートはドメインの専門家によって、名前付きエンティティ、時間表現、サイバーセキュリティ特有の概念によって注釈付けされている。
少数のシナリオでは、テキストで明示的にあるいは暗黙的に言及されるMITRE ATT&CKの概念を識別するために、MITRE ATT&CKの概念記述は、データ拡張のトレーニングに有効な情報源であることがわかった。
論文 参考訳(メタデータ) (2024-04-11T14:04:36Z) - TTPXHunter: Actionable Threat Intelligence Extraction as TTPs from Finished Cyber Threat Reports [3.2183320563774833]
敵の様相を知ることは、組織が効果的な防衛戦略を採用し、コミュニティで知性を共有するのを助ける。
脅威レポートの文で説明されたmodus operandiを解釈し、構造化フォーマットに変換するには、翻訳ツールが必要である。
本研究は、TTPXHunterという手法を用いて、サイバー脅威レポートから脅威情報を自動的に抽出する手法を紹介する。
論文 参考訳(メタデータ) (2024-03-05T19:04:09Z) - CVE-driven Attack Technique Prediction with Semantic Information
Extraction and a Domain-specific Language Model [2.1756081703276]
本稿では、CVE記述を分析し、CVEによるTTP攻撃を推測する革新的な技術を用いて、TTP予測ツールを提案する。
TTPpredictorは、ラベル付きデータとCVEとTP記述のセマンティックな相違によって引き起こされる課題を克服する。
本報告では,CVE分類の95%から98%からATT&CK技術まで,約98%,F1スコアの精度でTTP予測器の有効性を実証した経験的評価を行った。
論文 参考訳(メタデータ) (2023-09-06T06:53:45Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - What are the attackers doing now? Automating cyber threat intelligence
extraction from text on pace with the changing threat landscape: A survey [1.1064955465386]
文献から「テキストからのCTI抽出」関連研究を体系的に収集する。
提案するパイプラインのコンテキストで使用するデータソース,テクニック,CTI共有フォーマットを同定する。
論文 参考訳(メタデータ) (2021-09-14T16:38:41Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。