論文の概要: Leveraging Randomized Compiling for the QITE Algorithm
- arxiv url: http://arxiv.org/abs/2104.08785v2
- Date: Tue, 26 Oct 2021 08:53:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 06:53:42.275838
- Title: Leveraging Randomized Compiling for the QITE Algorithm
- Title(参考訳): QITEアルゴリズムにおけるランダム化コンパイルの活用
- Authors: Jean-Loup Ville, Alexis Morvan, Akel Hashim, Ravi K. Naik, Marie Lu,
Bradley Mitchell, John-Mark Kreikebaum, Kevin P. O'Brien, Joel J. Wallman,
Ian Hincks, Joseph Emerson, Ethan Smith, Ed Younis, Costin Iancu, David I.
Santiago, Irfan Siddiqi
- Abstract要約: 量子Imaginary Time Evolutionのような反復アルゴリズムは、コヒーレントエラーの影響を受けやすい。
本稿では、ランダム化コンパイルによるノイズ調整と、浄化による誤り軽減の組み合わせについて述べる。
ノイズ調整と誤差軽減を組み合わせることで,NISQデバイスの性能が向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of the current generation of Noisy Intermediate-Scale Quantum
(NISQ) hardware shows that quantum hardware may be able to tackle complex
problems even without error correction. One outstanding issue is that of
coherent errors arising from the increased complexity of these devices. These
errors can accumulate through a circuit, making their impact on algorithms hard
to predict and mitigate. Iterative algorithms like Quantum Imaginary Time
Evolution are susceptible to these errors. This article presents the
combination of both noise tailoring using Randomized Compiling and error
mitigation with a purification. We also show that Cycle Benchmarking gives an
estimate of the reliability of the purification. We apply this method to the
Quantum Imaginary Time Evolution of a Transverse Field Ising Model and report
an energy estimation and a ground state infidelity both below 1\%. Our
methodology is general and can be used for other algorithms and platforms. We
show how combining noise tailoring and error mitigation will push forward the
performance of NISQ devices.
- Abstract(参考訳): 現在のNISQ(Noisy Intermediate-Scale Quantum)ハードウェアの成功は、量子ハードウェアがエラー修正なしに複雑な問題に対処できることを示している。
問題の一つは、これらの機器の複雑さの増加によって生じるコヒーレントなエラーである。
これらのエラーは回路を通じて蓄積され、予測と緩和が難しいアルゴリズムに影響を及ぼす。
量子イマジナリー時間進化のような反復的アルゴリズムは、これらのエラーに影響を受けやすい。
本稿では,ランダム化コンパイルを用いた雑音調整と,精製による誤り軽減の組み合わせについて述べる。
また, サイクルベンチマークにより, 浄化の信頼性を推定できることを示した。
本手法を横フィールドイジングモデルの量子イマジナリー時間進化に適用し,エネルギー推定と基底状態の不整合をそれぞれ1\%以下で報告する。
我々の手法は一般的であり、他のアルゴリズムやプラットフォームにも利用できる。
ノイズ調整と誤差軽減を組み合わせることで,NISQデバイスの性能が向上することを示す。
関連論文リスト
- Tensor-network decoders for process tensor descriptions of non-Markovian noise [0.0]
フォールトトレラント計算には量子エラー補正(QEC)が不可欠である。
本稿では,2つのパラダイムQEC符号の性能について検討する。
論文 参考訳(メタデータ) (2024-12-18T11:17:09Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
本稿では,量子振幅推定のための雑音対応ベイズアルゴリズムであるBAEを紹介する。
我々は,BAEがハイゼンベルク限界推定を達成し,他の手法と比較した。
論文 参考訳(メタデータ) (2024-12-05T18:09:41Z) - Practical implementation of a single-qubit rotation algorithm [0.0]
Toffoliは重要な普遍量子ゲートであり、Cliffordゲートと共に将来のフォールトトレラント量子コンピューティングハードウェアで利用できるようになる。
我々はClifford+Toffoliゲートセットを用いて,最近提案された1量子回転アルゴリズムの性能を評価する。
論文 参考訳(メタデータ) (2024-10-24T13:53:21Z) - Identifying Bottlenecks of NISQ-friendly HHL algorithms [0.0]
NISQ適応反復QPEとそのHHLアルゴリズムの雑音耐性について検討する。
その結果,Qiskit readout や M Three readout package のようなノイズ低減技術は,ここでテストした小さなインスタンスにおいても,結果の回復には不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-10T14:11:27Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
安定猫量子ビットの既存システムに動機づけられたビットフリップ誤差のみに影響されるバイアスノイズ量子ビットを考察する。
現実的なノイズモデルでは、位相フリップは無視できないが、Pauli-Twirling近似では、ベンチマークが最大106ドルのゲートを含む回路の正しさを確認できる。
論文 参考訳(メタデータ) (2023-05-03T11:27:50Z) - Improved quantum error correction with randomized compiling [0.0]
現在の量子コンピューティングのハードウェアは高レベルのノイズに悩まされている。
誤り訂正符号の性能向上のために,ノイズ調整技術を用いた場合の役割と有効性について検討する。
論文 参考訳(メタデータ) (2023-03-13T04:24:24Z) - On proving the robustness of algorithms for early fault-tolerant quantum computers [0.0]
位相推定のためのランダム化アルゴリズムを導入し,その性能を2つの単純なノイズモデルで解析する。
回路深度が約0.916倍である限り、ランダム化アルゴリズムは任意に高い確率で成功できると計算する。
論文 参考訳(メタデータ) (2022-09-22T21:28:12Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
本稿では,ロバストフィッティングのためのハイブリッド量子古典アルゴリズムを提案する。
私たちのコアコントリビューションは、整数プログラムの列を解く、新しい堅牢な適合式である。
実際の量子コンピュータを用いて得られた結果について述べる。
論文 参考訳(メタデータ) (2022-01-25T05:59:24Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。