論文の概要: Quick Learner Automated Vehicle Adapting its Roadmanship to Varying
Traffic Cultures with Meta Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2104.08876v1
- Date: Sun, 18 Apr 2021 15:04:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 13:28:03.322973
- Title: Quick Learner Automated Vehicle Adapting its Roadmanship to Varying
Traffic Cultures with Meta Reinforcement Learning
- Title(参考訳): メタ強化学習による交通文化に適応したクイックラーナ自動走行車
- Authors: Songan Zhang, Lu Wen, Huei Peng, H. Eric Tseng
- Abstract要約: 我々は,メタ強化学習(MRL)駆動ポリシーを開発し,その迅速な学習能力を示す。
MRL駆動方式の高速適応性を検証するため, 環境中の2種類の分布変動をシミュレートし, シミュレーションを行った。
- 参考スコア(独自算出の注目度): 15.570621284198017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is essential for an automated vehicle in the field to perform
discretionary lane changes with appropriate roadmanship - driving safely and
efficiently without annoying or endangering other road users - under a wide
range of traffic cultures and driving conditions. While deep reinforcement
learning methods have excelled in recent years and been applied to automated
vehicle driving policy, there are concerns about their capability to quickly
adapt to unseen traffic with new environment dynamics. We formulate this
challenge as a multi-Markov Decision Processes (MDPs) adaptation problem and
developed Meta Reinforcement Learning (MRL) driving policies to showcase their
quick learning capability. Two types of distribution variation in environments
were designed and simulated to validate the fast adaptation capability of
resulting MRL driving policies which significantly outperform a baseline RL.
- Abstract(参考訳): 様々な交通文化や運転条件の下で、現場の自動運転車は、安全かつ効率的に走行し、他の道路利用者を危険にさらすことなく、適切な道路マンシップで車線変更を行うことが不可欠である。
近年では深層強化学習手法が優れており、自動走行政策にも応用されているが、新しい環境力学で目立たない交通に迅速に適応する能力が懸念されている。
マルチマルコフ決定過程(MDP)適応問題としてこの課題を定式化し,メタ強化学習(MRL)駆動方式を開発した。
MRL駆動方式がベースラインRLを著しく上回る速さで適応可能であることを検証するために,2種類の環境分布変動を設計・シミュレーションした。
関連論文リスト
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - DRNet: A Decision-Making Method for Autonomous Lane Changingwith Deep
Reinforcement Learning [7.2282857478457805]
DRNetは、DRLエージェントがシミュレートされた高速道路上で合理的な車線変更を行うことで、運転を学べる新しいDRLベースのフレームワークである。
我々のDRLエージェントは、衝突を起こさずに所望のタスクを学習でき、DDQNや他のベースラインモデルより優れています。
論文 参考訳(メタデータ) (2023-11-02T21:17:52Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
本稿では,ソーシャルカーの多種多様な運転方針を一つのメタ政治として訓練する効率的な方法を提案する。
ソーシャルカーのインタラクションに基づく報酬関数をランダム化することにより、多様な目的を生み出し、メタ政治を効率的に訓練することができる。
本研究では,社会自動車が学習メタ政治によって制御される環境を利用して,エゴ自動車の運転方針の堅牢性を高めるためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-19T17:42:36Z) - Towards Safe Autonomous Driving Policies using a Neuro-Symbolic Deep
Reinforcement Learning Approach [6.961253535504979]
本稿では, DRLSL (Dybolic Logics) と呼ばれる新しいニューロシンボリックモデルフリーDRLアプローチを提案する。
DRL(経験から学ぶ)とシンボリックな一階述語論理(知識駆動推論)の強みを組み合わせることで、実環境における自動運転のリアルタイムインタラクションにおける安全な学習を可能にする。
我々は,ハイDデータセットを用いた自律走行にDRLSLフレームワークを実装し,トレーニングとテストの両段階において,安全でない動作を回避できることを実証した。
論文 参考訳(メタデータ) (2023-07-03T19:43:21Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
論文 参考訳(メタデータ) (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Automated Lane Change Strategy using Proximal Policy Optimization-based
Deep Reinforcement Learning [10.909595997847443]
レーン変更操作は、一般に、特定のルーティング計画に従い、遅い車両を乗り越え、前方のマージレーンに適応するなど、ドライバによって実行される。
本研究では,近位政策最適化に基づく深層強化学習を用いた自動車線変更戦略を提案する。
訓練されたエージェントは、車線変更決定を行うためのスムーズで安全で効率的な運転ポリシーを学ぶことができる。
論文 参考訳(メタデータ) (2020-02-07T08:43:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。