論文の概要: Direction-Aggregated Attack for Transferable Adversarial Examples
- arxiv url: http://arxiv.org/abs/2104.09172v1
- Date: Mon, 19 Apr 2021 09:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 13:29:51.776145
- Title: Direction-Aggregated Attack for Transferable Adversarial Examples
- Title(参考訳): 移動可能な攻撃例に対する方向集約攻撃
- Authors: Tianjin Huang, Vlado Menkovski, Yulong Pei, YuHao Wang and Mykola
Pechenizkiy
- Abstract要約: 深層ニューラルネットワークは、入力に知覚不可能な変化を課すことによって作られる敵の例に弱い。
逆例は、モデルとそのパラメータが利用可能なホワイトボックス設定で最も成功した。
我々は,移動可能な攻撃事例を提供する方向集約型攻撃を提案する。
- 参考スコア(独自算出の注目度): 10.208465711975242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are vulnerable to adversarial examples that are crafted
by imposing imperceptible changes to the inputs. However, these adversarial
examples are most successful in white-box settings where the model and its
parameters are available. Finding adversarial examples that are transferable to
other models or developed in a black-box setting is significantly more
difficult. In this paper, we propose the Direction-Aggregated adversarial
attacks that deliver transferable adversarial examples. Our method utilizes
aggregated direction during the attack process for avoiding the generated
adversarial examples overfitting to the white-box model. Extensive experiments
on ImageNet show that our proposed method improves the transferability of
adversarial examples significantly and outperforms state-of-the-art attacks,
especially against adversarial robust models. The best averaged attack success
rates of our proposed method reaches 94.6\% against three adversarial trained
models and 94.8\% against five defense methods. It also reveals that current
defense approaches do not prevent transferable adversarial attacks.
- Abstract(参考訳): ディープニューラルネットワークは、入力に知覚できない変更を課すことによって作られる敵の例に弱い。
しかしながら、これらの逆例は、モデルとそのパラメータが利用可能なホワイトボックス設定で最も成功した。
他のモデルに転送可能な、あるいはブラックボックス設定で開発された敵の例を見つけることは、はるかに難しい。
本稿では,移動可能な攻撃事例を提供する方向集約型攻撃を提案する。
本手法は,攻撃過程における集約方向を利用して,ホワイトボックスモデルに過剰に適合する攻撃例を回避する。
ImageNetにおける大規模な実験により, 提案手法は, 対向例の転送可能性を大幅に向上し, 特に対向ロバストモデルに対して, 最先端攻撃よりも優れていた。
提案手法の平均攻撃成功率は,3つの敵訓練モデルに対して94.6\%,5つの防御法に対して94.8\%に達した。
また、現在の防御アプローチは、転送可能な敵の攻撃を防げないことも明らかにしている。
関連論文リスト
- Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
大規模視覚言語モデル(VLM)のロバスト性を評価するために、敵対的攻撃を用いることができる。
従来のトランスファーベースの敵攻撃は、高いイテレーション数と複雑なメソッド構造により、高いコストを発生させる。
本稿では, 拡散モデルを用いて, 自然, 制約のない, 対象とする対向的な例を生成するAdvDiffVLMを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:19:52Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for
Improving Adversarial Training [72.39526433794707]
敵の訓練とその変種は、敵の例に対抗して最も効果的なアプローチであることが示されている。
本稿では,モデルが類似した出力を生成することを奨励する,新たな対角訓練手法を提案する。
本手法は,最先端のロバスト性および自然な精度を実現する。
論文 参考訳(メタデータ) (2022-11-01T15:24:26Z) - Transferability Ranking of Adversarial Examples [20.41013432717447]
本稿では,転送攻撃処理を洗練させるランキング戦略を提案する。
多様な代理モデルの集合を利用することで, 逆例の転送可能性を予測することができる。
提案手法を用いて, 対向例の移動率を, ランダムな選択から, ほぼ上界レベルまで20%に引き上げることができた。
論文 参考訳(メタデータ) (2022-08-23T11:25:16Z) - Boosting the Transferability of Video Adversarial Examples via Temporal
Translation [82.0745476838865]
敵の例は転送可能であり、現実世界のアプリケーションにおけるブラックボックス攻撃に対して実現可能である。
本稿では,一組の時間的翻訳ビデオクリップ上での対向的摂動を最適化する時間的翻訳攻撃手法を提案する。
Kinetics-400 データセットと UCF-101 データセットを用いた実験により,本手法がビデオ対向例の転送可能性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2021-10-18T07:52:17Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Generating Unrestricted Adversarial Examples via Three Parameters [11.325135016306165]
提案された敵対攻撃は、限られたパラメータ数を持つ無制限の敵対的例を生成する。
MNISTとSVHNデータセットの人間による評価で平均的な成功率は93.5%である。
また、モデル精度を6つのデータセットで平均73%削減します。
論文 参考訳(メタデータ) (2021-03-13T07:20:14Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Generalizing Adversarial Examples by AdaBelief Optimizer [6.243028964381449]
本稿では,AdaBelief反復高速勾配符号法を提案し,その逆例を一般化する。
提案手法は,最先端の攻撃手法と比較して,ホワイトボックス設定における敵例を効果的に生成することができる。
転送速度は、最新の攻撃方法よりも7%-21%高いです。
論文 参考訳(メタデータ) (2021-01-25T07:39:16Z) - Are Adversarial Examples Created Equal? A Learnable Weighted Minimax
Risk for Robustness under Non-uniform Attacks [70.11599738647963]
敵の訓練は、強力な攻撃に耐える数少ない防衛の1つである。
従来の防御機構は、基礎となるデータ分布に従って、サンプルに対する均一な攻撃を前提とします。
非一様攻撃に対して重み付けされたミニマックスリスク最適化を提案する。
論文 参考訳(メタデータ) (2020-10-24T21:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。