論文の概要: Transferable Adversarial Examples with Bayes Approach
- arxiv url: http://arxiv.org/abs/2208.06538v2
- Date: Tue, 07 Jan 2025 08:52:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:25.438826
- Title: Transferable Adversarial Examples with Bayes Approach
- Title(参考訳): ベイズアプローチによる移動可能な逆数例
- Authors: Mingyuan Fan, Cen Chen, Wenmeng Zhou, Yinggui Wang,
- Abstract要約: ブラックボックスの敵攻撃は、信頼できるAIにおいて最も熱いトピックの1つである。
本稿では,ベイズ的アプローチのレンズを用いた逆例の転送可能性について検討する。
実験は、より移動可能な敵の例を作る上で、BayAtkの有意義な効果を示す。
- 参考スコア(独自算出の注目度): 15.35252941167733
- License:
- Abstract: The vulnerability of deep neural networks (DNNs) to black-box adversarial attacks is one of the most heated topics in trustworthy AI. In such attacks, the attackers operate without any insider knowledge of the model, making the cross-model transferability of adversarial examples critical. Despite the potential for adversarial examples to be effective across various models, it has been observed that adversarial examples that are specifically crafted for a specific model often exhibit poor transferability. In this paper, we explore the transferability of adversarial examples via the lens of Bayesian approach. Specifically, we leverage Bayesian approach to probe the transferability and then study what constitutes a transferability-promoting prior. Following this, we design two concrete transferability-promoting priors, along with an adaptive dynamic weighting strategy for instances sampled from these priors. Employing these techniques, we present BayAtk. Extensive experiments illustrate the significant effectiveness of BayAtk in crafting more transferable adversarial examples against both undefended and defended black-box models compared to existing state-of-the-art attacks.
- Abstract(参考訳): ブラックボックスの敵攻撃に対するディープニューラルネットワーク(DNN)の脆弱性は、信頼できるAIにおいて最も熱いトピックの1つである。
このような攻撃では、攻撃者はモデルについてインサイダーの知識を使わずに動作し、敵の例のクロスモデル転送性が重要となる。
様々なモデルで敵の例が有効になる可能性はあるが、特定のモデルのために特別に作られた敵の例は、しばしば移動性に乏しいことが観察されている。
本稿では,ベイズ的アプローチのレンズを用いた逆例の転送可能性について検討する。
具体的には、ベイズ的手法を用いて転送可能性の探索を行い、転送可能性の先行性を構成するものについて研究する。
次に、これらの先行例から抽出した動的重み付け戦略とともに、2つの具体的な移動可能性促進手法を設計する。
これらの技術を活用して、BayAtkを紹介します。
大規模な実験は、既存の最先端攻撃と比較して、防御されていないブラックボックスモデルと防御されたブラックボックスモデルの両方に対して、より伝達可能な敵の例を作る上で、BayAtkの有意義な効果を示している。
関連論文リスト
- Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop [2.176586063731861]
敵攻撃に対する一般的なアプローチは、敵の例の転送可能性に依存する。
SWFD(Salient Region & Weighted Feature Drop)をベースとした新しいフレームワークは,敵対的事例のターゲット転送可能性を高める。
論文 参考訳(メタデータ) (2024-11-11T08:23:37Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
大規模視覚言語モデル(VLM)のロバスト性を評価するために、敵対的攻撃を用いることができる。
従来のトランスファーベースの敵攻撃は、高いイテレーション数と複雑なメソッド構造により、高いコストを発生させる。
本稿では, 拡散モデルを用いて, 自然, 制約のない, 対象とする対向的な例を生成するAdvDiffVLMを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:19:52Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - Generating Adversarial Examples with Better Transferability via Masking
Unimportant Parameters of Surrogate Model [6.737574282249396]
非重要マスキングパラメータ(MUP)を用いた転送攻撃における敵例の転送可能性の向上を提案する。
MUPのキーとなるアイデアは、事前訓練されたサロゲートモデルを洗練して、転送ベースの攻撃を強化することである。
論文 参考訳(メタデータ) (2023-04-14T03:06:43Z) - Rethinking Model Ensemble in Transfer-based Adversarial Attacks [46.82830479910875]
転送可能性を改善する効果的な戦略は、モデルのアンサンブルを攻撃することである。
これまでの作業は、単に異なるモデルの出力を平均化するだけであった。
我々は、より移動可能な敵の例を生成するために、CWA(Common Weakness Attack)を提案する。
論文 参考訳(メタデータ) (2023-03-16T06:37:16Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
近年,ディープニューラルネットワーク(DNN)に対する敵対的攻撃が注目されている。
本稿では,画像の分布を操作することで,敵の例を再現する新しい手法を提案する。
本手法は,攻撃の伝達性を大幅に向上させ,未目標シナリオと目標シナリオの両方において最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T09:58:51Z) - Training Meta-Surrogate Model for Transferable Adversarial Attack [98.13178217557193]
クエリーを許可しない場合、ブラックボックスモデルに対する逆攻撃を考える。
この設定では、多くの手法が代理モデルを直接攻撃し、得られた敵の例をターゲットモデルを騙すために転送する。
メタサロゲートモデル(Meta-Surrogate Model:MSM)は,このモデルに対する攻撃が,他のモデルに容易に転送できることを示す。
論文 参考訳(メタデータ) (2021-09-05T03:27:46Z) - Direction-Aggregated Attack for Transferable Adversarial Examples [10.208465711975242]
深層ニューラルネットワークは、入力に知覚不可能な変化を課すことによって作られる敵の例に弱い。
逆例は、モデルとそのパラメータが利用可能なホワイトボックス設定で最も成功した。
我々は,移動可能な攻撃事例を提供する方向集約型攻撃を提案する。
論文 参考訳(メタデータ) (2021-04-19T09:54:56Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。