論文の概要: Plants Don't Walk on the Street: Common-Sense Reasoning for Reliable
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2104.09254v1
- Date: Mon, 19 Apr 2021 12:51:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 13:49:03.736549
- Title: Plants Don't Walk on the Street: Common-Sense Reasoning for Reliable
Semantic Segmentation
- Title(参考訳): 植物は通りを歩かない:信頼性の高いセマンティックセグメンテーションのための常識推論
- Authors: Linara Adilova, Elena Schulz, Maram Akila, Sebastian Houben, Jan David
Schneider, Fabian Hueger, Tim Wirtz
- Abstract要約: 我々は,交通シーンのオブジェクト間の関係を高レベルの抽象化で記述するために,部分的に設計され,部分的に学習されたルールセットを使用することを提案する。
これにより、低レベルのセンサー情報を消費する既存のディープニューラルネットワークを改善し、強化する。
- 参考スコア(独自算出の注目度): 0.7696728525672148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven sensor interpretation in autonomous driving can lead to highly
implausible predictions as can most of the time be verified with common-sense
knowledge. However, learning common knowledge only from data is hard and
approaches for knowledge integration are an active research area. We propose to
use a partly human-designed, partly learned set of rules to describe relations
between objects of a traffic scene on a high level of abstraction. In doing so,
we improve and robustify existing deep neural networks consuming low-level
sensor information. We present an initial study adapting the well-established
Probabilistic Soft Logic (PSL) framework to validate and improve on the problem
of semantic segmentation. We describe in detail how we integrate common
knowledge into the segmentation pipeline using PSL and verify our approach in a
set of experiments demonstrating the increase in robustness against several
severe image distortions applied to the A2D2 autonomous driving data set.
- Abstract(参考訳): 自動運転におけるデータ駆動センサの解釈は、ほとんどが常識的な知識で検証できるような、非常に目立たない予測につながる可能性がある。
しかし、データのみから共通知識を学ぶことは困難であり、知識統合へのアプローチは活発な研究分野である。
我々は,交通シーンのオブジェクト間の関係を高レベルの抽象化で記述するために,部分的に設計され,部分的に学習されたルールセットを使用することを提案する。
これにより、低レベルのセンサー情報を消費する既存のディープニューラルネットワークを改善し、強化する。
セマンティックセグメンテーションの問題を検証・改善するために,確立された確率的ソフト論理(PSL)フレームワークを適用した最初の研究を行った。
PSLを用いて共通知識をセグメンテーションパイプラインに統合し、A2D2自律運転データセットに適用されたいくつかの厳しい画像歪みに対するロバスト性の増加を示す一連の実験において、我々のアプローチを検証する方法について詳述する。
関連論文リスト
- Federated Adversarial Learning for Robust Autonomous Landing Runway Detection [6.029462194041386]
本稿では,着陸滑走路を検出するための対向学習フレームワークを提案する。
我々の知る限りでは、着陸滑走路検出における対向的なサンプル問題に対処する連合学習の事例としては、これが初めてである。
論文 参考訳(メタデータ) (2024-06-22T19:31:52Z) - LLMSense: Harnessing LLMs for High-level Reasoning Over Spatiotemporal Sensor Traces [1.1137304094345333]
我々は,大規模言語モデル(LLM)の高レベル推論タスクに有効なプロンプトフレームワークを設計する。
また,長いセンサトレースによる性能向上のための2つの戦略を設計する。
当社のフレームワークはエッジクラウドで実装可能で,データ要約やプライバシ保護のためにクラウド上での高レベルの推論を行うために,エッジ上で小さなLLMを実行することができる。
論文 参考訳(メタデータ) (2024-03-28T22:06:04Z) - Cognitive TransFuser: Semantics-guided Transformer-based Sensor Fusion
for Improved Waypoint Prediction [38.971222477695214]
RGB-LIDARベースのマルチタスク機能融合ネットワークであるCognitive TransFuserは、安全で完全な道路ナビゲーションのために、ベースラインネットワークを大幅に拡張し、超える。
提案したネットワークをCown05 Short と Town05 Long Benchmarkで広範囲な実験により検証し,44.2 FPSのリアルタイム推論時間を実現した。
論文 参考訳(メタデータ) (2023-08-04T03:59:10Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - DeepWORD: A GCN-based Approach for Owner-Member Relationship Detection
in Autonomous Driving [2.895229237964064]
グラフ畳み込みネットワーク(GCN)の設計により, 革新的な関係予測手法であるDeepWORDを提案する。
具体的には,局所相関を持つ特徴マップをノードの入力として活用し,情報豊かさを向上させる。
大規模ベンチマークとしてWORDと呼ばれるアノテートされたオーナーとメンバーの関係データセットを確立します。
論文 参考訳(メタデータ) (2021-03-30T06:12:29Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。