論文の概要: A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups
- arxiv url: http://arxiv.org/abs/2104.09459v1
- Date: Mon, 19 Apr 2021 17:21:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 14:19:33.467524
- Title: A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups
- Title(参考訳): 任意の行列群に対する等変多層パーセプトロンの実用的構築法
- Authors: Marc Finzi, Max Welling, Andrew Gordon Wilson
- Abstract要約: 行列群の同変層を解くための完全一般的なアルゴリズムを提供する。
他作品からのソリューションを特殊ケースとして回収するだけでなく、これまで取り組んだことのない複数のグループと等価な多層パーセプトロンを構築します。
提案手法は, 粒子物理学および力学系への応用により, 非同変基底線より優れる。
- 参考スコア(独自算出の注目度): 115.58550697886987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetries and equivariance are fundamental to the generalization of neural
networks on domains such as images, graphs, and point clouds. Existing work has
primarily focused on a small number of groups, such as the translation,
rotation, and permutation groups. In this work we provide a completely general
algorithm for solving for the equivariant layers of matrix groups. In addition
to recovering solutions from other works as special cases, we construct
multilayer perceptrons equivariant to multiple groups that have never been
tackled before, including $\mathrm{O}(1,3)$, $\mathrm{O}(5)$, $\mathrm{Sp}(n)$,
and the Rubik's cube group. Our approach outperforms non-equivariant baselines,
with applications to particle physics and dynamical systems. We release our
software library to enable researchers to construct equivariant layers for
arbitrary matrix groups.
- Abstract(参考訳): 対称性と等価性は、画像、グラフ、点雲などの領域におけるニューラルネットワークの一般化に基本的である。
既存の研究は主に翻訳群、回転群、置換群といった少数のグループに焦点を当ててきた。
本研究では,行列群の同変層を解くための完全一般アルゴリズムを提案する。
特殊ケースとして他の作品からの解の回収に加えて、これまで取り組まなかった複数の群に同値な多層パーセプトロンを構築し、その中には$\mathrm{o}(1,3)$、$\mathrm{o}(5)$、$\mathrm{sp}(n)$、rubik's cube groupが含まれる。
提案手法は, 粒子物理学および力学系への応用により, 非同変基底線より優れる。
研究者が任意の行列群に対して同変層を構築できるようにソフトウェアライブラリをリリースする。
関連論文リスト
- Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
コンボリューションカーネルをパラメータ化してアフィン変換に対する同変モデルを構築する方法を示す。
我々は,ベンチマークアフィン不変分類タスクにおいて,モデルのロバスト性と分布外一般化能力を評価する。
論文 参考訳(メタデータ) (2023-10-17T16:04:33Z) - An Algorithm for Computing with Brauer's Group Equivariant Neural
Network Layers [0.0]
本稿では,各群に対する重み行列によってベクトルを乗算するアルゴリズムを提案する。
提案手法は対称群である$S_n$に拡張され,その過程でarXiv:2303.06208のアルゴリズムが復元されることを示す。
論文 参考訳(メタデータ) (2023-04-27T13:06:07Z) - Geometric Clifford Algebra Networks [53.456211342585824]
本稿では,動的システムのモデリングのためのGeometric Clifford Algebra Networks (GCANs)を提案する。
GCANは幾何学的(クリフォード)代数を用いた対称性群変換に基づいている。
論文 参考訳(メタデータ) (2023-02-13T18:48:33Z) - How Jellyfish Characterise Alternating Group Equivariant Neural Networks [0.0]
学習可能で線型で$A_n$-equivariantな層関数の基底は、そのようなテンソルパワー空間の間の$mathbbRn$の標準基底である。
また,本手法が局所対称性に同値なニューラルネットワークの構築にどのように一般化するかについても述べる。
論文 参考訳(メタデータ) (2023-01-24T17:39:10Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - Brauer's Group Equivariant Neural Networks [0.0]
我々は、層が$mathbbRn$のテンソルパワーを持つような全ての可能な群同変ニューラルネットワークの完全な特徴付けを提供する。
そのようなテンソルパワー空間間の学習可能、線型、等変層関数に対する行列の分散集合を求める。
論文 参考訳(メタデータ) (2022-12-16T18:08:51Z) - Geometric Deep Learning and Equivariant Neural Networks [0.9381376621526817]
幾何学的深層学習の数学的基礎を調査し,群同変とゲージ同変ニューラルネットワークに着目した。
任意の多様体 $mathcalM$ 上のゲージ同変畳み込みニューラルネットワークを、構造群 $K$ の主バンドルと、関連するベクトルバンドルの切断間の同変写像を用いて開発する。
セマンティックセグメンテーションやオブジェクト検出ネットワークなど,このフォーマリズムのいくつかの応用を解析する。
論文 参考訳(メタデータ) (2021-05-28T15:41:52Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
群等価ニューラルネットワークは群不変ニューラルネットワークの構成要素として用いられる。
我々は、文学の範囲を、ディープラーニングモデルの顕著な構築ブロックとして現れつつある自己注意にまで広げる。
任意のリー群とその離散部分群に同値なリー自己結合層からなる構造であるリー変換器を提案する。
論文 参考訳(メタデータ) (2020-12-20T11:02:49Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。