QuDiet: A Classical Simulation Platform for Qubit-Qudit Hybrid Quantum
Systems
- URL: http://arxiv.org/abs/2211.07918v1
- Date: Tue, 15 Nov 2022 06:07:04 GMT
- Title: QuDiet: A Classical Simulation Platform for Qubit-Qudit Hybrid Quantum
Systems
- Authors: Turbasu Chatterjee, Arnav Das, Subhayu Kumar Bala, Amit Saha, Anupam
Chattopadhyay and Amlan Chakrabarti
- Abstract summary: textbfQuDiet is a python-based higher-dimensional quantum computing simulator.
textbfQuDiet offers multi-valued logic operations by utilizing generalized quantum gates.
textbfQuDiet provides a full qubit-qudit hybrid quantum simulator package.
- Score: 7.416447177941264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the recent years, numerous research advancements have extended the limit
of classical simulation of quantum algorithms. Although, most of the
state-of-the-art classical simulators are only limited to binary quantum
systems, which restrict the classical simulation of higher-dimensional quantum
computing systems. Through recent developments in higher-dimensional quantum
computing systems, it is realized that implementing qudits improves the overall
performance of a quantum algorithm by increasing memory space and reducing the
asymptotic complexity of a quantum circuit. Hence, in this article, we
introduce \textbf{QuDiet}, a state-of-the-art user-friendly python-based
higher-dimensional quantum computing simulator. \textbf{QuDiet} offers
multi-valued logic operations by utilizing generalized quantum gates with an
abstraction so that any naive user can simulate qudit systems with ease as
compared to the existing ones. We simulate various benchmark quantum circuits
in \textbf{QuDiet} and show the considerable speedup in simulation time as
compared to the other simulators without loss in precision. Finally,
\textbf{QuDiet} provides a full qubit-qudit hybrid quantum simulator package
with quantum circuit templates of well-known quantum algorithms for fast
prototyping and simulation. The complete code and packages of \textbf{QuDiet}
is available at https://github.com/LegacYFTw/QuDiet so that other platforms can
incorporate it as a classical simulation option for qubit-qudit hybrid systems
to their platforms.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm [0.0]
Digital quantum computers promise exponential speedups in performing quantum time-evolution.
The task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck.
We propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck.
arXiv Detail & Related papers (2024-05-17T04:17:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z) - Stochastic Quantum Circuit Simulation Using Decision Diagrams [3.9006434061597877]
A substantial amount of quantum algorithms research still relies on simulating quantum circuits on classical hardware.
We propose to use decision diagrams, as well as concurrent executions, to substantially reduce resource-requirements.
Backed up by rigorous theory, empirical studies show that this approach allows for a substantially faster and much more scalable simulation for certain quantum circuits.
arXiv Detail & Related papers (2020-12-10T12:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.