論文の概要: Learning Neural Network Quantum States with the Linear Method
- arxiv url: http://arxiv.org/abs/2104.11011v1
- Date: Thu, 22 Apr 2021 12:18:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-02 20:30:45.548999
- Title: Learning Neural Network Quantum States with the Linear Method
- Title(参考訳): 線形法によるニューラルネットワーク量子状態の学習
- Authors: J. Thorben Frank, Michael J. Kastoryano
- Abstract要約: 本手法は,複雑な値を持つニューラルネットワーク量子状態の最適化に有効であることを示す。
我々は、LMを最先端のSRアルゴリズムと比較し、LMが収束のために最大で1桁の繰り返しを必要とすることを発見した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the strong correlations present in quantum systems, classical machine
learning algorithms like stochastic gradient descent are often insufficient for
the training of neural network quantum states (NQSs). These difficulties can be
overcome by using physically inspired learning algorithm, the most prominent of
which is the stochastic reconfiguration (SR) which mimics imaginary time
evolution. Here we explore an alternative algorithms for the optimization of
complex valued NQSs based on the linear method (LM), and present the explicit
formulation in terms of complex valued parameters. Beyond the theoretical
formulation, we present numerical evidence that the LM can be used successfully
for the optimization of complex valued NQSs, to our knowledge for the first
time. We compare the LM to the state-of-the-art SR algorithm and find that the
LM requires up to an order of magnitude fewer iterations for convergence,
albeit at a higher cost per epoch. We further demonstrate that the LM becomes
the more efficient training algorithm whenever the cost of sampling is high.
This advantage, however, comes at the price of a larger variance.
- Abstract(参考訳): 量子システムには強い相関関係があるため、確率勾配降下のような古典的な機械学習アルゴリズムはニューラルネットワーク量子状態(NQS)のトレーニングに不十分であることが多い。
これらの困難は、物理的にインスパイアされた学習アルゴリズムを用いて克服することができ、その中で最も顕著なのが、想像上の時間発展を模倣した確率的再構成(sr)である。
本稿では、線形法(LM)に基づく複素値NQSの最適化のための代替アルゴリズムについて検討し、複素値パラメータの観点から明示的な定式化を提案する。
理論的な定式化の他に、複雑な値を持つNQSの最適化にLMが有効であることを示す数値的な証拠を、私たちの知識に初めて提示する。
我々は、lmを最先端srアルゴリズムと比較し、lmは1エポック当たりのコストは高いが、コンバージェンスのために最大で1桁少ないイテレーションを必要とすることを発見した。
さらに,サンプリングコストが高い場合には,lmがより効率的な学習アルゴリズムとなることを示す。
しかし、この利点はより大きなばらつきの値段にある。
関連論文リスト
- Enhancing Open Quantum Dynamics Simulations Using Neural Network-Based Non-Markovian Stochastic Schrödinger Equation Method [2.9413085575648235]
ニューラルネットワーク技術と非マルコフシュロディンガー方程式のシミュレーションを組み合わせる手法を提案する。
このアプローチは、特に低温での長時間シミュレーションに必要な軌道の数を著しく減少させる。
論文 参考訳(メタデータ) (2024-11-24T16:57:07Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
逆問題では、潜在的に破損し、しばしば不適切な測定結果から、いくつかの基本的な関心のシグナルを再構築することを目的としている。
浅い平衡正規化器(L)を用いたLUアルゴリズムを提案する。
これらの暗黙のモデルは、より深い畳み込みネットワークと同じくらい表現力があるが、トレーニング中にはるかにメモリ効率が良い。
論文 参考訳(メタデータ) (2022-10-10T19:50:37Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Exponential Error Convergence in Data Classification with Optimized
Random Features: Acceleration by Quantum Machine Learning [8.98526174345299]
量子コンピュータによる機械学習のためのアルゴリズム、量子機械学習(QML)は、最適化されたランダムな特徴のサンプリングを指数関数的に高速化することができる。
ここでは、最適化されたランダムな特徴によって加速される分類タスクのためのQMLアルゴリズムを構築する。
最適化されたランダムな特徴量に対するQMLアルゴリズムと勾配降下(SGD)を組み合わせることで、最先端の指数収束速度を達成できることを実証する。
論文 参考訳(メタデータ) (2021-06-16T18:00:00Z) - An optimal quantum sampling regression algorithm for variational
eigensolving in the low qubit number regime [0.0]
量子サンプリング回帰(QSR)は、代替の量子古典的アルゴリズムである。
低量子ビット数構造における時間的複雑さに基づいて,その利用事例を分析した。
ベンチマーク問題に対するアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2020-12-04T00:01:15Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Deep unfolding of the weighted MMSE beamforming algorithm [9.518010235273783]
MISOダウンリンクチャネルに対するWMMSEアルゴリズムに対する深部展開の新たな適用法を提案する。
深層展開は、自然に専門家の知識を取り入れており、即時かつしっかりとしたアーキテクチャ選択の利点、トレーニング可能なパラメータの少ないこと、説明可能性の向上がある。
シミュレーションにより、ほとんどの設定において、展開されたWMMSEは、一定回数の反復に対して、WMMSEよりも優れているか、等しく動作することを示す。
論文 参考訳(メタデータ) (2020-06-15T14:51:20Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。