論文の概要: Enhancing Open Quantum Dynamics Simulations Using Neural Network-Based Non-Markovian Stochastic Schrödinger Equation Method
- arxiv url: http://arxiv.org/abs/2411.15914v1
- Date: Sun, 24 Nov 2024 16:57:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:48.965986
- Title: Enhancing Open Quantum Dynamics Simulations Using Neural Network-Based Non-Markovian Stochastic Schrödinger Equation Method
- Title(参考訳): ニューラルネットワークに基づく非マルコフ確率シュレーディンガー方程式を用いたオープン量子力学シミュレーションの強化
- Authors: Kaihan Lin, Xing Gao,
- Abstract要約: ニューラルネットワーク技術と非マルコフシュロディンガー方程式のシミュレーションを組み合わせる手法を提案する。
このアプローチは、特に低温での長時間シミュレーションに必要な軌道の数を著しく減少させる。
- 参考スコア(独自算出の注目度): 2.9413085575648235
- License:
- Abstract: The Non-Markovian Stochastic Schrodinger Equation (NMSSE) offers a promising approach for open quantum simulations, especially in large systems, owing to its low scaling complexity and suitability for parallel computing. However, its application at low temperatures faces significant convergence challenges. While short-time evolution converges quickly, long-time evolution requires a much larger number of stochastic trajectories, leading to high computational costs. To this end,we propose a scheme that combines neural network techniques with simulations of the non-Markovian stochastic Schrodinger equation. By integrating convolutional neural networks (CNNs) and long short-term memory recurrent neural networks (LSTMs),along with the iterative attentional feature fusion (iAFF) technique, this approach significantly reduces the number of trajectories required for long-time simulations, particularly at low temperatures, thereby substantially lowering computational costs and improving convergence. To demonstrate our approach, we investigated the dynamics of the spin-boson model and the Fenna-Matthews-Olson (FMO) complex across a range of parameter variations.
- Abstract(参考訳): 非マルコフ確率シュロディンガー方程式(NMSSE)は、特に大規模システムにおいて、スケーリングの複雑さが低く、並列コンピューティングに適しているため、オープン量子シミュレーションに有望なアプローチを提供する。
しかし、低温での応用は、かなりの収束の課題に直面している。
短時間の進化は急速に収束するが、長時間の進化はより多くの確率的軌道を必要とするため、計算コストが高い。
この目的のために、ニューラルネットワーク技術とマルコフ確率シュロディンガー方程式のシミュレーションを組み合わせたスキームを提案する。
畳み込みニューラルネットワーク(CNN)と長寿命メモリリカレントニューラルネットワーク(LSTM)を統合することで、反復的注意機能融合(iAFF)技術とともに、長時間のシミュレーション、特に低温で必要となるトラジェクトリの数を著しく削減し、計算コストを大幅に削減し、収束性を向上させる。
本研究では,スピンボソンモデルとFMO(Fenna-Matthews-Olson complex)のパラメータ変動のダイナミクスについて検討した。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Scalable neural quantum states architecture for quantum chemistry [5.603379389073144]
量子状態のニューラルネットワーク表現の変分最適化は、相互作用するフェルミオン問題の解決に成功している。
本稿では,Ab-initio量子化学応用のための,ニューラルネットワークに基づく変分量子モンテカルロ計算を改善するための拡張並列化手法を提案する。
論文 参考訳(メタデータ) (2022-08-11T04:40:02Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)モデルは、長期量子力学をシミュレートするために用いられる。
この研究は、オープン量子システムの動的進化をシミュレートする効果的な機械学習アプローチを構築する。
論文 参考訳(メタデータ) (2022-05-07T08:53:55Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term
Memory Recurrent Neural Network [0.0]
ブートストラップ法はLSTM-NNの構成と予測に適用される。
ブートストラップに基づくLSTM-NNアプローチは、オープンシステムの長期量子力学を伝播する実用的で強力なツールである。
論文 参考訳(メタデータ) (2021-08-03T05:58:54Z) - Learning Neural Network Quantum States with the Linear Method [0.0]
本手法は,複雑な値を持つニューラルネットワーク量子状態の最適化に有効であることを示す。
我々は、LMを最先端のSRアルゴリズムと比較し、LMが収束のために最大で1桁の繰り返しを必要とすることを発見した。
論文 参考訳(メタデータ) (2021-04-22T12:18:33Z) - Quantum Long Short-Term Memory [3.675884635364471]
LSTM(Long Short-term memory)は、シーケンスおよび時間依存性データモデリングのためのリカレントニューラルネットワーク(RNN)である。
本稿では,QLSTMを疑似化したLSTMのハイブリッド量子古典モデルを提案する。
我々の研究は、ノイズの多い中間スケール量子(NISQ)デバイス上でのシーケンスモデリングのための機械学習アルゴリズムの実装への道を開いた。
論文 参考訳(メタデータ) (2020-09-03T16:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。