論文の概要: Consistent and symmetry preserving data-driven interface reconstruction
for the level-set method
- arxiv url: http://arxiv.org/abs/2104.11578v1
- Date: Fri, 23 Apr 2021 13:21:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 12:55:59.287145
- Title: Consistent and symmetry preserving data-driven interface reconstruction
for the level-set method
- Title(参考訳): レベルセット法におけるデータ駆動インタフェース再構成の一貫性と対称性
- Authors: Aaron B. Buhendwa, Deniz A. Bezgin, Nikolaus Adams
- Abstract要約: 我々は、レベルセット法、すなわち、インターフェース再構成(IR)に焦点を当てる。
体積率と開口率の計算。
提案手法は, 粗解決インターフェースの精度を向上し, 従来のIRを高分解能で復元する。
浮動小数点対称実装と計算効率の詳細を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, machine learning has been used to substitute parts of conventional
computational fluid dynamics, e.g. the cell-face reconstruction in
finite-volume solvers or the curvature computation in the Volume-of-Fluid (VOF)
method. The latter showed improvements in terms of accuracy for coarsely
resolved interfaces, however at the expense of convergence and symmetry. In
this work, a combined approach is proposed, adressing the aforementioned
shortcomings. We focus on interface reconstruction (IR) in the level-set
method, i.e. the computation of the volume fraction and apertures. The combined
model consists of a classification neural network, that chooses between the
conventional (linear) IR and the neural network IR depending on the local
interface resolution. The proposed approach improves accuracy for coarsely
resolved interfaces and recovers the conventional IR for high resolutions,
yielding first order overall convergence. Symmetry is preserved by mirroring
and rotating the input level-set grid and subsequently averaging the
predictions. The combined model is implemented into a CFD solver and
demonstrated for two-phase flows. Furthermore, we provide details of floating
point symmetric implementation and computational efficiency.
- Abstract(参考訳): 近年、機械学習は従来の計算流体力学の一部を代用するために使われてきた。
有限体積解法におけるセルフェイス再構成またはvof法における曲率計算
後者は粗く解決されたインタフェースの精度の改善を示したが、収束と対称性を犠牲にしていた。
本研究では,上記の欠点に対処し,組み合わせたアプローチを提案する。
レベルセット手法におけるインタフェース再構成(IR)に焦点を当てる。
体積率と開口率の計算。
組み合わせモデルは、従来の(線形)IRとニューラルネットワークIRを、局所的なインターフェイスの解像度に応じて選択する分類ニューラルネットワークで構成されている。
提案手法は,粗分解界面の精度を向上し,従来のirを高分解能で回収し,一階全体の収束を実現する。
対称性は、入力レベルセットグリッドをミラーリングして回転させ、その後予測を平均化する。
組み合わせモデルはCFDソルバに実装され、2相流に対して実証される。
さらに,浮動小数点対称実装の詳細と計算効率について述べる。
関連論文リスト
- Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
ニューラルネットワークアーキテクチャは高次元パラメータ依存偏微分方程式(pPDE)を解くために提示される
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
適応有限要素法(AFEM)で生成される粗いグリッド解と一連の補正を出力する。
論文 参考訳(メタデータ) (2024-03-19T11:34:40Z) - Convergence Visualizer of Decentralized Federated Distillation with
Reduced Communication Costs [3.2098126952615442]
フェデレートラーニング(FL)は、データ共有を必要とせずに協調学習を実現し、プライバシーの漏洩を防ぐ。
本研究では,CMFD の未解決課題として,(1) 通信コストの削減と(2) モデル収束の可視化の2つを解決した。
論文 参考訳(メタデータ) (2023-12-19T07:23:49Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
ユニタリネットワーク(POU-Nets)の分割は、回帰とPDEの解に対する代数収束率を実現することができる。
ガウス雑音モデルを用いてPOU-Netを拡張し、最大可算損失の勾配に基づく一般化を導出できる確率的一般化を得る。
本研究では,高次元・低次元での性能を定量化するためのベンチマークを行い,高次元空間内のデータの潜在次元にのみ依存することを示す。
論文 参考訳(メタデータ) (2021-07-07T08:02:00Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。